Losningsskiss tenta 2025-12-10, Analys del 1

1. (a) Forlinger vi med konjugatuttrycket far vi vn2 + an + v/n? — bn
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(b) Standardgrénsvirdena for exponentialfunktionen och sinus ger
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2. Vi ser att funktionen f(z) = ’ ar definierad och kontinuerlig for alla x # 2,

|z —2|
och eftersom lina f(x) = oo s& d&r x = 2 en unik vertikal asymptot. Vi far med
T—

1
—r—2— =% omuz<2

| s,
r+24+ = om zx > 2,

polynomdivision att f(z) = {

lim_(f(2) — (~x — 2)) = lim ((z) — (2 +2) =0
och dérmed ar y = —x — 2 och y = = + 2 sneda asymptoter. Vi far

vilket enkelt ger att derivatans nollstéllen &4r vid x = 1 och z = 3. Vi gor en

teckentabell:
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Vi kan nu skissa grafen:
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Vi ser fran denna att grafen har ett lokalt minimum f(3) = 6, och ett globalt
minimum f(1) = —2.



3.
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En linjar substitution ger
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Vi far

arctan(3x) _ |u=arctan(3z 2 arctan(Bx)Q
]__’_9x2d'r_|:du_1+92dx:| B/Udu_F—FC_T‘FC,
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Lat f(z) = %, vilket ger att f/(z) =
punkt (a, f(a)) har ekvationen

(HxQ) Tangenten till y = f(z) i en

a2 a
=@ =0 & y-rig=granE-a. O

Denna tangenter passerar origo (z,y) = (0,0) om

a? 2a

- 2 2y _ 2 2 _
S i (1+a2)2(0—a) & —a“(14a°) = —2a° < a“(a—1)(a+1) =0,

sa for a = 0,+1. Insédttning av dessa varden pa a i ekvation (1) ger de tre
tangenterna y = 0, y = /2 och y = —x/2.

Om vi till exempel sétter in punkten (z,y) = (0,1) i ekvation (1) far vi

a? 2a

- = 0—a) & 1+a?=—2d>
14 a? (1+a2)2( @) ta @

som saknar 16sning, och ddrmed gar ingen tangent genom punkten (0, 1).

Derivatans definition ger att

/ _ f(0+h)—f(O) .
A it

hlh| — 0

= lim |h| = 0.
—0

Funktionen f(z) &r ddrmed derivarbar i punkten z = 0, och vi har f/(0) = 0.

For x > 0 far vi direkt att f'(z) = 2z, och for z < 0 far vi f'(z) = —2x.
Tillsammans med resultatet i (a) far vi darmed att f'(z) = 2|z|.

x|

Fran resultatet i (b) foljer direkt att G(x) = 5 ar en primitiv funktion
till g(z) = |x|.



