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Problem 1

We can start by noting that we are given an incremental claim amounts
claims triangle, but the Chain Ladder model is defined in terms of aggregated
amounts, and the corresponding claims triangle with accumulated amounts
is given by

1 2 3
1 1523 3843 4030
2 785 1706 C2,3

3 343 C3,2 C3,3

where we have added the future accumulated amounts Ci,j for i+ j > 4, and
due to that there are only two development years to be predicted, the Chain
Ladder model only has two development factors to be estimated; f1, f2:

f̂1 =
3843 + 1706

1523 + 785
, and f̂2 =

4030

3843
.

The a)-part amounts to calculating the reserves for accident year 2 and 3,
which are given by

R̂2 = c2,2(f̂2 − 1) = 83.01, and R̂3 = c3,1(f̂1f̂2 − 1) = 521.78.
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The b)-part corresponds to calculating the expected values of the incremental
Ii,js in the original data table

1 2 3
1 1523 3843 4030
2 785 1706 I2,3
3 343 I3,2 i3,3

using the Chain Ladder model. To start off, note that Î2,3 = R̂2. Further,
from the relation between incremental and accumulated amounts, it follows
that

Î3,2 = Ĉ3,2 − c3,1, and Î3,3 = Ĉ3,3 − Ĉ3,2,

which from the lecture notes gives us that

Î3,2 = c3,1(f̂1 − 1) = 481.66, and Î3,3 = c3,1f̂1(f̂2 − 1) = 40.13,

where you can check that R̂3 = Î3,2 + Î3,3 as it should.

Problem 2

The problem can be thought of as a deferred annuity with at most one
payment, two years into the future as seen from today of a today 65 year
old individual. That is, the individual will receive 1 unit of money if the
individual is alive at its 67th birthday, which corresponds to the random
discounted payment (or total cost)

L = d(2)1{alive at 67, given 65 today}

where d(2) = exp{−2r2}, and

E[L] = d(2)P(T0 > 67 | T0 > 65) = d(2)p65p66,

where the last equality follows from the lecture notes, where px = 1 − qx.
That is,

E[L] = 0.958

which is equal to the discounted fair premium. This answers part a).

Part b) can be answered by noting that the stochastic indicator 1{alive at 67, given 65 today}
is Bernoulli(p) distributed, where p = p65p66, which gives us that

Var(1{alive at 67, given 65 today}) = p(1− p),

and that

Var(L) = d(2)2 Var(1{alive at 67, given 65 today}) = d(2)2p(1− p) = 0.012.
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Problem 3

The idea with this problem is to use the thinning property of Poisson pro-
cesses described in the lecture notes: Let N (i), i = 0, 1, denote the number
of small (i = 0) and large (i = 1) claims. It then holds that

N (0) ∼ Po(pλ), N (1) ∼ Po((1− p)λ), and N := N (0) +N (1) ∼ Po(λ),

and in particular E[N (0)] = Var(N (0)) = pλ and E[N (1)] = Var(N (1)) =
(1− p)λ, which is needed to be able to solve the problem.

Introduce the total claim costs for next year’s small and large claims, which
are given by

SN(i) =
N(i)∑
j=1

X
(i)
j , i = 0, 1.

From the lecture notes we know that

E[S
(i)
N ] = E[N (i)]E[X

(i)
1 ] = E[N (i)]µ(i),

where we have used that E[X
(i)
j ] = µ(i) for all j, and

Var(S
(i)
N ) = E[N (i)] Var(X

(i)
1 ) + Var(N (i))E[X

(i)
1 ]2

= E[N (i)](σ(i))2 + Var(N (i))(µ(i))2

where we have used that Var(X
(i)
j ) = (σ(i))2 for all j. We have now essen-

tially answered part b), which we do by simplifying the above giving us the
following expressions for large claims

E[S
(1)
N ] = (1− p)λµ(1), and Var(S

(1)
N ) = (1− p)λ((σ(1))2 + (µ(1))2).

Analogously, for small claims, we arrive at

E[S
(0)
N ] = pλµ(0), and Var(S

(0)
N ) = pλ((σ(0))2 + (µ(0))2).

Thus, if we introduce the total claim cost for next year

SN := S
(0)
N + S

(1)
N ,

we can answer part a), since

E[SN ] = E[S
(0)
N ] + E[S

(1)
N ] = λ(pµ(0) + (1− p)µ(1)),
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and by using that S
(0)
N and S

(1)
N are independent by construction, it follows

that

Var(SN) = Var(S
(0)
N ) + Var(S

(1)
N )

= λ(p((σ(0))2 + (µ(0))2) + (1− p)((σ(1))2 + (µ(1))2)).

Alternative solution. For part a), introduce Zj = δjX
(0)
j + (1 − δj)X(1)

j ,

where δj ∼ Be(p), independent of all X
(i)
j s and N , and it holds that

SN :=
N∑
j=1

Zj.

Further, note that

Var(SN) = E[N ] Var(Z1) + Var(N)E[Z1]
2

= λ(Var(Z1) + E[Z1]
2)

= λE[Z2
1 ]

= λE[(δjX
(0)
j + (1− δj)X(1)

j )2],

but due to independence between the X
(i)
j s and the δjs it follows that

E[(δjX
(0)
j + (1− δj)X(1)

j )2] = pE[(X
(0)
j )2] + (1− p)E[(X

(1)
j )2]

where we have used that E[δ2j ] = p and that E[δj(1 − δj)] = 0. Thus, it
follows that

Var(SN) = λ(p((σ(0))2 + (µ(0))2) + (1− p)((σ(1))2 + (µ(1))2)),

as above. To answer part b), repeat the last arguments using Z
(1)
j = (1 −

δj)X
(i)
j and

SN(1) :=
N∑
j=1

Z
(1)
j .

Problem 4

In the problem formulation we are asked to calculate a) the density function
and in b) the survival function based on A(x) from above. The perhaps
easiest way is to start with part b), since

S(x) = exp{−A(x)} = exp{−a
b

(ebx−1)}, x > 0,
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and a) follows from b) using the relation that

α(x) :=
d

dx
A(x) = a ebx ≥ 0.

together with that

f(x) = α(x)S(x) = a exp{bx− a

b
(ebx−1)}, x > 0.

To see which values of a and b that are permissible, we know that α(x) ≥ 0,
which implies that A(x) must be non-decreasing and positive, and in order
for this to induce a proper distribution, we need that S(x) → 0 (or F (x) =
1 − S(x) → 1) as x → ∞. Combining these observations it follows that
a ≥ 0 and b > 0, where one can note that b → 0 gives us the Exponential
distribution as a boundary case (e.g. A(x)→ ax as b→ 0).

Problem 5

The basic question concerns how the number of insurance contracts will affect
your portfolio risk. This is hard unless you only consider the liability side,
which is the situation that we will consider. If you consider the asset side
as well, you need to clearly explain the assumptions that you make. We will
not go into these details here.

Let Y (i) denote the total one year insurance loss for line of business i = 1, 2,
where we assume that

Y (i) = −
∑
j=1

X
(i)
j =

∑
j=1

L
(i)
j ,

that is Y (i) > 0 corresponds to a loss and X
(i)
j = A

(i)
j − L

(i)
j = −L(i)

j ,

where E[X
(i)
1 ] = µ(i), which gives us that E[Y (i)] = −niµ

(i), and Var(X
(i)
1 ) =

(σ(i))2, which together with that all contracts are independent gives us that
Var(Y (i)) = ni(σ

(i))2. To conclude, it follows that

Y (i) ∼ N(−niµ
(i), ni(σ

(i))2), i = 1, 2.

In part a) we are supposed to calculate the Value-at-Risk for each line of
business separately, but we can treat them identically: From the definition
of VaR at level p is given by

VaRp(−Y (i)) = F−1−d(1)(−Y (i))
(1− p),
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and by using that Y (i) follows a normal distribution, together with no dis-
counting (d(1) = 1), following the steps of the lecture notes, we arrive at

VaRp(−Y (i)) = −niµ
(i) +

√
niσ

(i)Φ−1(1− p), i = 1, 2,

where φ−1(1−p) denotes the 1−p percentile of a standard N(0, 1)-distribution,
which answers part a).

N.B. All of these minus signs are a bit confusing, and it is OK to argue
directly for the correct sign using that VaR is a percentile, and that you
calculate this percentile based on the correct tail of the distribution.

In part b), from the lecture notes we know that

SCR(i) := VaRp(−(Y (i) − E[Y (i)]))

and that

SCR :=

√
(SCR(1))2 + (SCR(2))2 + 2ρ SCR(1) SCR(2).

In order to ease notation, let z1−p := Φ−1(1− p), which gives us that

SCR(i) =
√
niσ

(i)z1−p

and

SCR = z1−p

√
n1(σ(1))2 + n2(σ(2))2 + 2ρ

√
n1n2σ(1)σ(2).

Further, by repeating the above calculations when doubling the number of
contracts gives us that

SCR2×# of contracts =
√

2 SCR,

whereas if you double the insured amount (by repeating the above or using
positive homogeneity of VaR) we get

SCR2×insured amount = 2 SCR,

where SCR corresponds to the original SCR-value.


