
MATEMATISKA INSTITUTIONEN Written exam
STOCKHOLMS UNIVERSITET MM5026 VT25
Avd. Matematik Ordinary differential equations
Examiner: Oliver Petersen May 28, 2025

No calculator, book or notes are allowed. Give complete justifications for your answers!
At least 14 points (including bonus) are needed in order to proceed to the voluntary oral exam.

1. (4 points) Consider the ODE

x′(t) = x(t)2,

x(t0) = c,

where c ∈ R is any constant.

(a) Solve the ODE.

(b) What is the largest interval containing t0 on which there is a continuously differen-
tiable solution x(t)?

Solution:

(a) When c = 0, the solution is given by x(t) = 0 for all t. For c ̸= 0, we use that the
ODE is separable. For t near t0, we expect that x(t) ̸= 0 since x(t0) = c ̸= 0. We
therefore may write

d

dt

(
1

x(t)

)
= − x′(t)

x(t)2
= −1.

Integrating this between t0 and t, we see that

1

x(t)
− 1

x(t0)
=

∫ t

t0

(−1)ds = −(t− t0).

Using the initial condition x(t0) = c, we conclude that

1

x(t)
=

1

c
− (t− t0),

or equivalently

x(t) =
1

1
c − (t− t0)

,

for c ̸= 0. We may now check that indeed

x′(t) =
1(

1
c − (t− t0)

)2 = x(t)2,

x(t0) =
1
1
c

= c,

so x(t) is a solution (independent of arguing that we can divide by x(t)).

(b) We first note that the solutions found in (a), namely either x(t) = 0 if c = 0 and

x(t) =
1

1
c − (t− t0)

if c ̸= 0. The latter exists for all t except where the denominator vanishes, i.e. for all
t such that

t ̸= t0 +
1

c
.



We claim that the largest interval where x is the unique solution is

(−∞,∞),

if c = 0, and (
−∞, t0 +

1

c

)
if c > 0, and (

t0 +
1

c
,∞

)
if c < 0. We already have checked that the solution exists on these intervals in the
respective cases, so only uniqueness remains. Writing the ODE on the form

x′(t) = f(t, x(t)),

we note that f(t, x) = x2. By the local uniqueness theorem in the book (the global
uniqueness theorem does not apply, since f is not Lipshitz on an interval of the form
(t0 − a, t0 + a)), the solution x is the unique solution on any interval containing t0.
The solutions cannot be extended continuously over the end points of the interval,
since they do not converge there.

2. (4 points) Solve the system of ODE

x′(t) =

(
2 −1
4 −2

)
x(t) +

(
1
2

)
,

x(0) =

(
0
0

)
.

Solution: Writing

A =

(
2 −1
4 −2

)
,

the solution to the homogeneous equation is given by

xh(t) = etA.

There are different ways to compute etA. The general method is to diagonalize A as far
as possible, finding the generalized eigenvalues. That would be one possible way, but a
quicker way is to note that

A2 =

(
0 0
0 0

)
for this particular A. We therefore conclude that

eAt =
∞∑
n=0

(tA)n

n!
= id + tA =

(
1 + 2t −t
4t 1− 2t

)
.

We now get a general formula for the solution via the integrating factor method:

d

dt

(
e−tAx(t)

)
= e−tA

(
x′(t)−Ax(t)

)
= e−tA

(
1
2

)
.

Integrating both sides between t0 = 0 and t gives

e−tAx(t)− x(0) =

∫ t

0
e−sA

(
1
2

)
ds.



Using the initial condition x(0) = 0, we conclude that

x(t) =

∫ t

0
e(t−s)A

(
1
2

)
ds

=

∫ t

0

(
1 + 2(t− s) −(t− s)
4(t− s) 1− 2(t− s)

)(
1
2

)
ds

=

∫ t

0

(
1
2

)
ds

=

(
t
2t

)
.

We double-check that this is indeed the solution:

x′(t) =

(
1
2

)
= Ax(t) +

(
1
2

)
,

x(0) =

(
1 · 0
2 · 0

)
= 0,

where we have used that

A

(
1
2

)
= 0.

3. (4 points) Consider the ODE

xy′′(x) +
1

2
y′(x) + y(x) = 0.

(a) Find the general solution to this ODE using the generalized power series method. It
is enough to find the correct recursion formula for the coefficients in the generalized
power series expansions.

(b) Are all solutions to this equation continuously differentiable at x = 0?

Solution:

(a) We work with the generalized power series Ansatz around x = 0:

y(x) =
∞∑
k=0

akx
k+µ.

The other terms in the ODE are (formally) computed to be

1

2
y′(x) =

∞∑
k=0

1

2
ak(k + µ)xk+µ−1,

xy′′(x) =

∞∑
k=0

ak(k + µ)(k + µ− 1)xk+µ−1,

Now shifting the index to j = k+1 (and then relabeling back to k) in the expression
for y(x) to match the other terms, we see that

y(x) =
∞∑
j=1

aj−1x
j+µ−1 =

∞∑
k=1

ak−1x
k+µ−1.



Inserting these computations into the ODE gives

0 =

∞∑
k=0

ak(k + µ)(k + µ− 1)xk+µ−1 +

∞∑
k=0

1

2
ak(k + µ)xk+µ−1 +

∞∑
k=1

ak−1x
k+µ−1

=

(
a0µ(µ− 1) +

1

2
a0µ

)
xµ−1

+

∞∑
k=1

(
ak(k + µ)(k + µ− 1) +

1

2
ak(k + µ) + ak−1

)
xk+µ−1

= a0µ

(
µ− 1

2

)
xµ−1 +

∞∑
k=1

(
ak(k + µ)

(
k + µ− 1

2

)
+ ak−1

)
xk+µ−1.

This gives us the conditions

a0µ

(
µ− 1

2

)
= 0,

ak(k + µ)

(
k + µ− 1

2

)
= −ak−1,

for all k ≥ 0. We may assume that a0 ̸= 0, for otherwise we either get ak = 0 for all
k ≥ 0 or we get the same solution as if a0 ̸= 0 with shifted indices. Since a0 ̸= 0, the
first equation implies that

µ = 0

or

µ =
1

2
.

For any of these two choices of µ,

(k + µ)

(
k + µ− 1

2

)
̸= 0

for k ≥ 1, and we conclude that

ak = − ak−1

(k + µ)
(
k + µ− 1

2

)
for all k ≥ 1.

(b) The numbers µ1 = 0 and µ2 = 1/2 are called the roots of the indicial equation in the
general theory. Since they do not differ by an integer, the theory in the book tells us
that the general solution to the linear second order ODE can be written as

y(x) = Axµ1y1(x) +Bxµ2y2(x),

where y1 and y2 are continuously differentiable at x = 0 (they are given by the

respective power series expansions above without the factor xµ). Since xµ2 = x
1
2 is

not continuously differentiable at x = 0, it follows that y(x) is a solution to the ODE
which is not continuously differentiable at x = 0 if, for example, A = 0 and B = 1.
Answer: Not all solutions to the ODE are continuously differentiable at x = 0.



4. (4 points) Solve the following initial value problem using the Laplace transform:

y′′(t)− y(t) = 3e3t,

y(0) = 2,

y′(0) = 1.

Solution: Let Y (s) = L[y(t)](s). Applying the Laplace transform to both sides of the
equation yields

L[y′′(t)− y(t)](s) = L[3e3t](s)

s2Y (s)− sy(0)− y′(0)− Y (s) =
3

s− 3

(s2 − 1)Y (s)− 2s− 1 =
3

s− 3

Y (s) =
3

(s− 3)(s2 − 1)
+

2s

s2 − 1
+

1

s2 − 1

Using partial fraction decomposition we obtain

3

(s− 3)(s2 − 1)
=

3

8

1

s− 3
− 3

8

s

s2 − 1
− 9

8

1

s2 − 1
,

and hence

Y (s) =
3

8

1

s− 3
+

13

8

s

s2 − 1
− 1

8

1

s2 − 1
.

Using injectivity of the Laplace transform and the formulas

L[cosh(t)] = s

s2 − a2

L[sinh(at)] = a

s2 − a2

L[eat] = 1

s− a
,

we obtain the final solution

y(t) =
3

8
e3t +

13

8
cosh(t)− 1

8
sinh(t).

Alternatively, we may obtain the solution without using the Laplace transform formulas
for sinh or cosh by taking the partial fraction decomposition of 1

s2−1
to obtain

Y (s) =
3

8

1

s− 3
+

7

8

1

s+ 1
+

6

8

1

s− 1
,

which gives us

y(t) =
3

8
e3t +

7

8
e−t +

6

8
et.



5. (4 points) Let c1, c2 ∈ R and consider the boundary value problem

y′′(x) + 2y′(x) + 2y(x) = 0,

y(0) = c1,

y(L) = c2.

For what L > 0 does there exist a unique solution?

Solution: By the general theory in the book, the boundary value problem has a unique
solution if and only if the associated homogeneous boundary value problem has only the
trivial solution, i.e. when c1 = c2 = 0. We proceed by solving the associated homogeneous
boundary value problem.

The characteristic polynomial of the given differential equation is λ2 + 2λ+ 2. Rewriting
this as (λ+1)2 +1, we see the roots are λ = −1± i, and hence the general solution to the
differential equation is

y(t) = e−t(a cos(t) + b sin(t)) a, b ∈ R.

The first boundary value y(0) = 0 is only satisfied if a = 0, so we obtain a one parameter
family of functions satisfying this condition

y(t) = be−t sin(t) b ∈ R.

The second boundary value y(L) = 0 gives us the equation

be−L sin(L) = 0,

which is satisfied when either b = 0 or sin(L) = 0. Thus if sin(L) ̸= 0, the only solution
to the boundary value problem is the trivial solution. Further, if sin(L) = 0, then each
function in the one parameter family given above is a solution, and hence the solution is
not unique. Therefore, we conclude that the boundary value problem has a unique solution
for all L > 0 such that L ̸= nπ where n ∈ N.

6. (4 points) Let E denote the function

E(x1, x2) := x21 + sin2(x2).

(a) Find an autonomous system with an equilibrium point x̂, for which E is a strict
Liapunov function in some open set Ω ⊆ R2 containing x̂.

(b) Sketch the orbits of your autonomous system.

(c) Find all equilibrium points of your autonomous system.

(d) Determine if the equilibrium points are unstable, stable and/or asymptotically stable.

Solutions:

(a) We claim that E is a strict Liapunov function in the open set

Ω :=

{
(x1, x2) ∈ R2 | x21 + x22 <

1

100

}
for the autonomous system

x′(t) = −x(t)

with equilibrium point

x̂ :=

(
0
0

)
.



It is clear that x′(t) = 0 at x̂, so it is an equilibrium point. Moreover, E(x1, x2) ≥ 0
for all (x1, x2) ∈ R and only vanishes at x1 = 0 and x2 = kπ, where k ∈ Z. Note that
x̂ corresponds to the case when k = 0, so x̂ ∈ Ω. However, for k ̸= 0, we compute
that

x21 + x22 = 02 + (kπ)2 = k2π2 > π2 >
1

100
,

so all other zeros of E do not lie in Ω. Finally, we check that E(x1(t), x2(t)) has
negative derivative along any orbit:

d

dt
E(x1(t), x2(t)) = 2x1(t)x

′
1(t) + 2 sin(x2(t)) cos(x2(t))x

′
2(t)

= −2x1(t)
2 − sin(2x2(t))x2(t)

= −2

(
x1(t)

2 +
sin(2x2(t))

2x2(t)
x2(t)

2

)
< 0

unless (x1(t), x2(t)) = (0, 0), since

sin(2x2(t))

2x2(t)
>

1

2

for x2 ∈ (0, 1/2) is a standard inequality (one can also argue using Taylor’s theorem).

(b)
 

(c) The equilibrium points are given by all x ∈ R2 such that f(x) = 0, where we write
our system as

x′(t) = f(x(t)).

In our case, f(x) = −x, so there is only one equilibrium point given by x = x̂ = 0.

(d) Our autonomous system can be written on the form

x′(t) =

(
−1 0
0 −1

)
x(t),

so it is a linear system. Therefore the linearization at the equilibrium point x̂ and
it has two negative eigenvalues that coincide, namely −1. The general theory in the
course book therefore implies that the equilibrium point is asymptotically stable.


