Tentamensskrivning i Mathematics of Cryptography, 7,5 hp 15th March 2024 08.00-13.00

There are 8 problems with a total score of 80 points. The score from the exam is added to the score from the homework assignments. Grades are then given by the following intervals:

A 89-78p, B 77-69p, C 68-60p, D 59-51p, E 50-42p.

Remember to motivate your answers carefully. No calculators or computers may be used.

- 1. a) What do we mean by a one-way-function with a trapdoor?
 - b) Define the terms symmetric cryptosystem and asymmetric cryptosystem and explain their main differences. 2 p
 - c) Define what it means for an algorithm to be subexponential.
 - d) What types of elliptic curves should one avoid if one wants to use them in the Elliptic curve Diffie-Hellman key exchange?
 2 p
 - e) Describe how the ECIES (Elliptic Curve Integrated Encryption Scheme) includes both symmetric and asymmetric algorithms. 2 p
- 2. a) Use the Chinese remainder theorem to find all integer solutions to the following system of equations:

$$\begin{cases} 3x \equiv 5 \mod 7\\ 3x \equiv 21 \mod 22\\ 7x \equiv 19 \mod 27. \end{cases}$$

 $3\,\mathrm{p}$

 $4\,\mathrm{p}$

 $2\,\mathrm{p}$

 $2\,\mathrm{p}$

- b) Say that $N = p_1^{r_1} \cdot \ldots \cdot p_k^{r_k}$ where p_1, \ldots, p_k are distinct primes and that G is a group with N elements. Show that an element $g \in G$ is a generator of G if and only if $g^{N/p_i} \neq 1$ for all $i = 1, \ldots, k$.
- c) Say that $p \equiv_4 3$. Fix any $a \neq_p 0$. Show that if the equation $x^2 \equiv_p a$ has a solution, then its solutions are $a^{(p+1)/4}$ and $-a^{(p+1)/4}$. Show furthermore that if the equation $x^2 \equiv_p a$ does not have a solution then $a^{(p+1)/2} \equiv_p -a$. 3p
- 3. a) Describe the Diffie-Hellman key exchange in an arbitrary group. 3 p
 - b) Which types of public parameters for the Diffie-Hellman key exchange in \mathbb{F}_p^* should one avoid? $2\,\mathrm{p}$
 - c) Describe how (i.e. the algorithms involved and the expected number of operations of these) to find (good) public parameters for the Diffie-Hellman key exchange in \mathbb{F}_{p}^{*} . 5 p

4.	a)	Describe the problem a digital signature scheme is supposed to solve.	$2\mathrm{p}$
	b)	Explain why a hash function is typically used in a digital signature scheme.	$2\mathrm{p}$
	c)	Describe the Elliptic curve digital signature scheme.	4 p

- d) Explain why digital signature schemes do not completely solve the issue of meddler-in-themiddle attacks? 2 p
- 5. a) What is the complexity of the index calculus?
 - b) Use index calculus to solve the DLP in \mathbb{F}_{167}^* :

$$17^x \equiv 77 \mod 167.$$

The fact that $77 \cdot 17^{-140} = 108$ and the following table will be helpful:

$\int i$	$17^i \mod 167$	١
34	72	
37	30	l
53	112	
139	90	/

8 p

 $1\,\mathrm{p}$

 $2\,\mathrm{p}$

6.	a)	Explain in detail how the three different steps: relation building, elimination and gcd-	
		computation, works in the difference of squares method, together with the quadratic sieve,	
		for factoring integers.	$6\mathrm{p}$

- b) Explain how the choice of the smoothness bound B affects the complexity. 3 p
- c) Is this algorithm exponential/subexponential/polynomial?
- 7. a) Let P be a point on an elliptic curve E defined over a finite field \mathbb{F}_p . Use Hasse's theorem to give an upper bound for the order of P. 2 p
 - b) For which primes p does the Weierstrass equation $y^2 = x^3 + 2x + 4$ define an elliptic curve over \mathbb{F}_p ?
 - c) Consider the elliptic curve

$$E: y^2 = x^3 + 2x + 4$$

defined over \mathbb{F}_{17} and the points P = (0, 2) and Q = (13, 0). Compute 2P, 4P and P + Q. 3p

d) Explain why Lenstra's factorization algorithm (in general) is faster than Pollard's p-1 factorization algorithm even though they are based on the same idea. 3 p

8. a) Let p be a prime and $E(\mathbb{F}_p)$ be an elliptic curve given by the Weierstrass equation $y^2 = x^3 + ax + b$. Let P and Q be points in $E(\mathbb{F}_p)$, and assume that $\#E(\mathbb{F}_p)$ is known. Consider the DLP: xP = Q. Define the function $f : E(\mathbb{F}_p) \to E(\mathbb{F}_p)$ by

$$f(R) = \begin{cases} R + P - Q & \text{if } R = \mathcal{O} \text{ or } R_x = 0 \mod 3\\ R + 2P + Q & \text{if } R_x = 1 \mod 3\\ R + P + 3Q & \text{if } R_x = 2 \mod 3 \end{cases}$$

for any point $R = (R_x, R_y)$ on $E(\mathbb{F}_p)$ with $0 \le R_x < p$. Put $X_0 = Y_0 = \mathcal{O}, X_{i+1} = f(X_i)$ and $Y_{i+1} = f(f(Y_i))$. Say that after computing N values of X_i and Y_i you find that $X_N = Y_N$. Explain how this information can be used to solve the DLP? 4 p

b) We expect N in general to be of size \sqrt{p} . Explain why. 4 p c) Is this algorithm exponential/subexponential/polynomial? 1 p d) What is the complexity of the fastest known algorithm to compute $\#E(\mathbb{F}_p)$? 1 p