There are 8 problems with a total score of 80 points. The score from the exam is added to the score from the homework assignments. Grades are then given by the following intervals:

A 89-78p, B 77-69p, C 68-60p, D 59-51p, E 50-42p.

Remember to motivate your answers carefully. No calculators or computers may be used.

- 1. a) What is the main benefit/drawback of a symmetric cryptosystem compared to an asymmetric cryptosystem? 2 p
 - b) What is the fastest method (we have seen in this course) to solve the DLP in an elliptic curve, and what is its complexity? 2 p
 - c) Suppose an algorithm takes an input with k bits and requires $\mathcal{O}\left(e^{(\log k)^3}\right)$ steps to complete. Motivate if this algorithm runs in polynomial/subexponential/exponential time? 2p
 - d) Explain (briefly) how a digital signature scheme works.
 - e) Explain (briefly) how the complexity of the index calculus depends upon the frequency of smooth integers. $$2\,{\rm p}$$
- 2. a) Let a, b, m be positive integers. Give a criterion in terms of a, b, m for there to be a solution to the equation

$$ax \equiv_m b.$$

b) Take positive integers a, b, m so that there is at least one solution to the equation,

$$ax \equiv_m b.$$

Give an expression (in terms of a, b, m) for how many solutions there are modulo m. 2 p

c) Show that if gcd(e, p - 1) = 1 then the equation

$$x^e \equiv_p a$$

has a unique solution (modulo p) for all integers a.

- d) Describe the square-and-multiply algorithm when counting modulo an integer m. What is its complexity? 3 p
- 3. a) An elliptic curve E over \mathbb{F}_{89} given by the equation $y^2 = x^3 + 59x + 1$ and $\#E(\mathbb{F}_{89}) = 75$. Let P = (78, 35) and Q = (14, 10) which are points in $E(\mathbb{F}_{89})$. Consider the DLP: xP = Q. Say that x_0 is a solution. Use the following table to determine x_0 modulo 5.

$$\begin{pmatrix} i & 3 & 5 & 6 & 9 & 15 & 25 & 30 \\ iP & (81,68) & (7,57) & (0,1) & (10,16) & (59,44) & (77,18) & (60,45) \\ iQ & (73,52) & (22,33) & (71,82) & (81,68) & (60,45) & (77,71) & (59,45) \end{pmatrix}$$

 $3\,\mathrm{p}$

 $2\,\mathrm{p}$

 $2\,\mathrm{p}$

 $3\,\mathrm{p}$

	b)	Describe which computations (without carrying them out) one would need to make to con- tinue the Pohlig-Hellman algorithm to solve the DLP above.	$4\mathrm{p}$
	c)	Give an expression for the complexity of Shank's baby-step giant-leap method combined with the Pohlig-Hellman algorithm to solve the DLP in a group with N elements.	$3\mathrm{p}$
4.	a)	Describe how the RSA cryptosystem works.	$3\mathrm{p}$
	b)	What is the RSA-problem?	$1\mathrm{p}$
	c)	The version of RSA that is described in the book is deterministic. It is therefore not considered to be safe to use in practice. Describe a situation when this weakness could be effectively exploited.	$2\mathrm{p}$
	d)	Describe (including some details) what padding is and how it can turn a deterministic encryption into a probabilistic one.	$3\mathrm{p}$
	e)	What is the main drawback of adding padding to the encryption?	1 p
٣	`		9
5.	a)	Describe the Fermat primality test.	$2\mathrm{p}$
	b)	What is a Carmichael number?	$1\mathrm{p}$
	c)	Say that n is a composite number that is not a Carmichael number. Show that at least half of all integers between 2 and $n-1$ are Fermat witnesses of compositeness.	$3\mathrm{p}$
	d)	Is there a Miller-Rabin witness for each composite number n ?	1 p
	e)	Give an expression, with a motivation, for how many random integers with k digits one would expect to check to find a prime number.	3 p
6.	a)	Let $N = 44377$, $F(T) = T^2 - N$ and $a = \lfloor \sqrt{N} \rfloor + 1 = 210$. Characterize which of the numbers: $F(a), F(a+1), F(a+2), \dots, F(a+100)$	

that are divisible by 5 and which that are divisible by 11.

b) Now put N = 3219577, $F(T) = T^2 - N$ and $a = \lfloor \sqrt{N} \rfloor + 1 = 1794$. After computing F(a+i) for i from 0 to 350 we find the following five 13-smooth numbers:

$$(a+7)^{2} - N = 2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 13,$$

$$(a+19)^{2} - N = 2^{6} \cdot 3^{4} \cdot 13,$$

$$(a+59)^{2} - N = 2^{4} \cdot 3 \cdot 7^{3} \cdot 13,$$

$$(a+73)^{2} - N = 2^{7} \cdot 3^{3} \cdot 7 \cdot 11,$$

$$(a+227)^{2} - N = 2^{5} \cdot 3^{3} \cdot 7 \cdot 11 \cdot 13,$$

$$(a+343)^{2} - N = 2^{3} \cdot 3^{7} \cdot 7 \cdot 11.$$

Find all perfect squares one can form out of these numbers.

c) Write up all checks for factors of N coming from these perfect squares. You do not need to carry out the computations.

$3\,\mathrm{p}$

 $3\,\mathrm{p}$

7.	Say	y that you want to set up ECDH (elliptic curve Diffie-Hellman key exchange).	
	a)	Say that we can generate a large prime p . Are there any types of primes that one should avoid?	1 p
	b)	Describe how to (in an efficient/fast way) find an elliptic curve E defined over \mathbb{F}_p .	$2\mathrm{p}$
	c)	Are there any types of elliptic curves that one should avoid?	$2\mathrm{p}$
	d)	What property do we want from a point P in $E(\mathbb{F}_p)$ to make ECDH secure?	$1\mathrm{p}$
	e)	Describe the algorithms involved with their complexity, to efficiently/fast find a point ${\cal P}$ with this property.	4 p
8.	a)	Describe Lenstra's elliptic curve method to factor integers.	$4\mathrm{p}$
	b)	Is this algorithm exponential/subexponential/polynomial?	1 p
	c)	Given an integer N, how can one in an efficient way find two integers a, b such that $4a^3 + 27b^2 \not\equiv_N 0$ together with a solution $(x, y) = (x_0, y_0)$ to the equation $y^2 \equiv_N x^3 + ax + b$?	$1\mathrm{p}$
	d)	Explain why Lenstra's factorization method (in general) is faster than Pollard's $p-1$ even though they are based on the same idea.	$4\mathrm{p}$

d) Give an expression for the complexity of this algorithm (the quadratic sieve together with factorization via difference of squares). State also if the algorithm runs in polynomial/

 $2\,\mathrm{p}$

subexponential/exponential time.