There are 8 problems with a total score of 80 points. The score from the exam is added to the score from the homework assignments. Grades are then given by the following intervals:

A 89-78p, B 77-69p, C 68-60p, D 59-51p, E 50-42p.

Remember to motivate your answers carefully. No calculators or computers may be used.

1.	a)	What is the main benefit/drawback of a symmetric cryptosystem compared to an asymmetric cryptosystem?	$2\mathrm{p}$
	b) What is the fastest method (we have seen in this course) to solve the DLP in \mathbb{F}_p^* , and w is its complexity?		1 p
	c)	Name the mathematical problems that we have seen in this course (and on which we have based cryptographic algorithms) that can be solved fast (in polynomial time) on a <i>quantum</i> computer?	1 p
	d)	For which choices of integers $N = pq$, with p, q primes, is Pollard's $p - 1$ factorization algorithm fast?	1 p
	e)	Explain how a Fermat primality test works.	$2\mathrm{p}$
	f)	Explain how the LLL-algorithm together with Babai's algorithm can be used to solve the apprCVP.	$3\mathrm{p}$
2.	a)	Show that the Euclidean algorithm runs in polynomial time.	$3\mathrm{p}$
	b)	Let p, q be two distinct primes. Show that the equation $x^e \equiv_{pq} 1$ has a unique solution if and only if $gcd(e, (p-1)(q-1)) = 1$.	$3\mathrm{p}$
	c)	Show that the Weierstrass equation $y^2 = x^3 + 2x + 4$ over the field \mathbb{F}_{17} defines an elliptic curve $E(\mathbb{F}_p)$.	1 p
	d)	Show that $P = (0, 2)$ and $Q = (13, 0)$ are elements of $E(\mathbb{F}_{17})$.	1 p
	e)	Compute 2P, 4P and $P + Q$ in $E(\mathbb{F}_{17})$.	$2\mathrm{p}$
3.		live the DLP $xP = Q$ where $P = (78, 35)$ and $Q = (14, 10)$ are points on the elliptic curve E er \mathbb{F}_{89} given by the equation $y^2 = x^3 + 59x + 1$ and which has 75 points all together. Use the	

1	i	3	5	6	9	15	25	30)	
	iP	(81, 68)	(7, 57)	(0,1)	(10, 16)	(59, 44)	(77, 18)	(60, 45)	
	iQ	(73, 52)	(22, 33)	(71, 82)	(81, 68)	(60, 45)	(77, 71)	(59, 45)	1

Pohlig-Hellman algorithm, the fact that (73, 52) = (60, 44) + (0, 1), and the following table:

 $10\,\mathrm{p}$

4.	a)	Describe how the RSA digital signature scheme works.	$3\mathrm{p}$
	b)	What is the meddler-in-the-middle attack?	$1\mathrm{p}$
	c)	Explain why a digital signature scheme protects, or why it does not protect, against a meddler-in-the-middle attack?	$2\mathrm{p}$
	d)	Explain what a hash function is.	$1\mathrm{p}$
	e)	Explain how a hash function often is used together with digital signature schemes?	$1\mathrm{p}$
	f)	Explain why a hash function often is used together with digital signature schemes?	$2\mathrm{p}$
5.	a)	Explain in detail how the three different steps: relation building, elimination and gcd- computation, works in the quadratic sieve algorithm (together with the difference of squares) for factoring integers.	6 p
	b)	Explain how the complexity of the relation building step depends on the distribution of B -smooth numbers.	$3\mathrm{p}$
	c)	Is this algorithm exponential/subexponential/polynomial?	1 p
6.	a)	State the collision theorem.	$1\mathrm{p}$
	b)	Give an abstract formulation of Pollard's ρ algorithm.	$2\mathrm{p}$
	c)	What is the expected running time for Pollard's ρ algorithm?	$1\mathrm{p}$
	d)	Is this algorithm exponential/subexponential/polynomial?	$1\mathrm{p}$
	e)	Explain how the expected running time for Pollards ρ algorithm connects to the collision theorem.	$3\mathrm{p}$
	f)	Explain how one can one use Pollard's ρ algorithm to solve a DLP?	$2\mathrm{p}$
7.	q.the $1 <$	CDSA is set up with a prime p , an elliptic curve $E(\mathbb{F}_p)$ and a point $G \in E(\mathbb{F}_p)$ of prime order Samantha chooses a secret signing key $1 \leq s \leq q-1$, computes $V = sG$, and publishes e verification key V . Samantha then chooses a document $1 \leq d \leq p$, and a random element $\langle e \langle q \rangle$. Samantha then computes the signature $s_1 \equiv_q x(eG)$ and $s_2 \equiv_q e^{-1}(d + s \cdot s_1)$. hally Samantha sends $(d, (s_1, s_2))$ to Victor. Victor then computes $v_1 \equiv_q ds_2^{-1}$, $v_2 \equiv_q s_1 s_2^{-1}$.	
	a)	Show that if Samantha has signed the document then $x(v_1G + v_2V)$ is equal to $s_1 \mod q$.	$2\mathrm{p}$
	b)	Say that Samantha signs documents d and d' using the same random element e . Show how that can be used to find Samantha's secret signing key s .	$2\mathrm{p}$
	c)	In setting up the ECDSA, describe the algorithms involved to find the large prime p .	$2\mathrm{p}$
	d)	Describe how to then find an elliptic curve $E(\mathbb{F}_p)$ and a point $G \in E(\mathbb{F}_p)$ of prime order q , where q has roughly the same size as p .	3 p
	e)	Are there any types of elliptic curves that one should avoid?	$1\mathrm{p}$

8.	a)	Compute the inverse of $x^4 + 1$ in $\mathbb{F}_{11}[x]/(x^5 - 1)$.	$3\mathrm{p}$
	b)	Explain why ternary polynomials are used in NTRUEncrypt.	$2\mathrm{p}$
	c)	State the NTRU Key Recovery Problem.	1 p
	d)	Roughly how many steps does the brute force method take to solve the NTRU Key Recovery Problem?	1 p
	e)	Show how the NTRU Key Recovery Problem can be reformulated as a lattice SVP.	$3\mathrm{p}$