0. Organisational Matters

Marc Hellmuth

University of Stockholm

Lecturer: Marc Hellmuth (marc.hellmuth@math.su.se)

TAs: Anna Lindeberg (anna.lindeberg@math.su.se)

Axel Ljungström (axel.ljungstrom@math.su.se)

Lecturer: Marc Hellmuth (marc.hellmuth@math.su.se)

TAs: Anna Lindeberg (anna.lindeberg@math.su.se)

Axel Ljungström (axel.ljungstrom@math.su.se)

Lectures are weekly: MO and THU 1 - 3pm Tutorials are weekly: MO and THU 3 - 4pm

Lecturer: Marc Hellmuth (marc.hellmuth@math.su.se)

TAs: Anna Lindeberg (anna.lindeberg@math.su.se)

Axel Ljungström (axel.ljungstrom@math.su.se)

Lectures are weekly: MO and THU 1 - 3pm Tutorials are weekly: MO and THU 3 - 4pm

However, as I am on travel on two weeks, the schedule will be slightly adjusted.

First changes:

additional lecture: Monday 02-sep 3-4 additional lecture: Monday 16-sep 3-4

there will be additional adjustments (TBA on homepage - so check frequently)

Lecturer: Marc Hellmuth (marc.hellmuth@math.su.se)

TAs: Anna Lindeberg (anna.lindeberg@math.su.se)

Axel Ljungström (axel.ljungstrom@math.su.se)

Lectures are weekly: MO and THU 1 - 3pm Tutorials are weekly: MO and THU 3 - 4pm

However, as I am on travel on two weeks, the schedule will be slightly adjusted.

First changes:

additional lecture: Monday 02-sep 3-4 additional lecture: Monday 16-sep 3-4

there will be additional adjustments (TBA on homepage - so check frequently)

All lectures and tutorial take place in Lecture room 1 (except in week 43)

See SCHEDULE-LINK at kurser homepage.

Lecturer: Marc Hellmuth (marc.hellmuth@math.su.se)

TAs: Anna Lindeberg (anna.lindeberg@math.su.se)

Axel Ljungström (axel.ljungstrom@math.su.se)

Lectures are weekly: MO and THU 1 - 3pm Tutorials are weekly: MO and THU 3 - 4pm

However, as I am on travel on two weeks, the schedule will be slightly adjusted.

First changes:

additional lecture: Monday 02-sep 3-4 additional lecture: Monday 16-sep 3-4

there will be additional adjustments (TBA on homepage - so check frequently)

All lectures and tutorial take place in Lecture room 1 (except in week 43)

See SCHEDULE-LINK at kurser homepage.

All information / news / exercises etc.pp. can be found online: https://kurser.math.su.se/ Course: DA4005 HT24

Lectures will be in-person.

Recordings of former lectures, and the current slides and a (handwritten) script are available online (see DA4005 homepage).

Course examination is done in four parts:

- Home assignments IND1 and IND2, worth 1.5 HP each, graded A-F.
- Practical exercises (PE), worth 1.5 HP, graded P/F.
- A written exam (THEO), worth 3 HP and graded A-F.

Course examination is done in four parts:

- Home assignments IND1 and IND2, worth 1.5 HP each, graded A-F.
- Practical exercises (PE), worth 1.5 HP, graded P/F.
- A written exam (THEO), worth 3 HP and graded A-F.
- INDi consists of 2 individual exercise sheets, $i \in \{1,2\}$
- PE consists of 2 individual programming projects

Course examination is done in four parts:

- Home assignments IND1 and IND2, worth 1.5 HP each, graded A-F.
- Practical exercises (PE), worth 1.5 HP, graded P/F.
- A written exam (THEO), worth 3 HP and graded A-F.
- IND*i* consists of 2 individual exercise sheets, $i \in \{1,2\}$
- PE consists of 2 individual programming projects

You pass the course if IND1, IND2, PE and exam have been passed.

Course examination is done in four parts:

- Home assignments IND1 and IND2, worth 1.5 HP each, graded A-F.
- Practical exercises (PE), worth 1.5 HP, graded P/F.
- A written exam (THEO), worth 3 HP and graded A-F.
- IND*i* consists of 2 individual exercise sheets, $i \in \{1,2\}$
- PE consists of 2 individual programming projects

You pass the course if IND1, IND2, PE and exam have been passed.

To pass INDi at least 50% of the exercises must be correct (in total) $i \in \{1,2\}$. To pass PE each individual programming exercise must be passed. To pass THEO, at least 50% of THEO must be correct.

Course examination is done in four parts:

- Home assignments IND1 and IND2, worth 1.5 HP each, graded A-F.
- Practical exercises (PE), worth 1.5 HP, graded P/F.
- A written exam (THEO), worth 3 HP and graded A-F.
- IND*i* consists of 2 individual exercise sheets, $i \in \{1,2\}$
- PE consists of 2 individual programming projects

You pass the course if IND1, IND2, PE and exam have been passed.

To pass INDi at least 50% of the exercises must be correct (in total) $i \in \{1,2\}$. To pass PE each individual programming exercise must be passed. To pass THEO, at least 50% of THEO must be correct.

All solutions must be provided in English!

Course examination is done in four parts:

- Home assignments IND1 and IND2, worth 1.5 HP each, graded A-F.
- Practical exercises (PE), worth 1.5 HP, graded P/F.
- A written exam (THEO), worth 3 HP and graded A-F.
- INDi consists of 2 individual exercise sheets, i ∈ {1,2}
- PE consists of 2 individual programming projects

Team work to discuss the exercises is allowed and also recommended.

BUT:

- everyone has to hand in an individual and independent solution of the exercies
- you must be able to explain your solutions in the tutorial
- no copies of solutions
- never forget name + student number

There are deadlines when to hand-in specified at the DA4005 webpage and ex-sheets.

There are deadlines when to hand-in specified at the DA4005 webpage and ex-sheets. Hand in the respectice exercise before the end of the deadline as follows:

There are deadlines when to hand-in specified at the DA4005 webpage and ex-sheets.

Hand in the respectice exercise before the end of the deadline as follows:

 IND1- and IND2-exercises should be provided as single PDF-file (handwritten-scanned of latex-PDF).

There are deadlines when to hand-in specified at the DA4005 webpage and ex-sheets.

Hand in the respectice exercise before the end of the deadline as follows:

- IND1- and IND2-exercises should be provided as single PDF-file (handwritten-scanned of latex-PDF).
- PE-exercises consists of programming-tasks and should be provided as single compressed zip-file in case you have more than one file.

There are deadlines when to hand-in specified at the DA4005 webpage and ex-sheets.

Hand in the respectice exercise before the end of the deadline as follows:

- IND1- and IND2-exercises should be provided as single PDF-file (handwritten-scanned of latex-PDF).
- PE-exercises consists of programming-tasks and should be provided as single compressed zip-file in case you have more than one file.

When handing in programming exercises, always document how to compile and run your program.

Well-commented source code is required! Do not copy source-code from WWW!

There are deadlines when to hand-in specified at the DA4005 webpage and ex-sheets.

Hand in the respectice exercise before the end of the deadline as follows:

- IND1- and IND2-exercises should be provided as single PDF-file (handwritten-scanned ot latex-PDF).
- PE-exercises consists of programming-tasks and should be provided as single compressed zip-file in case you have more than one file.

When handing in programming exercises, always document how to compile and run your program.

Well-commented source code is required! Do not copy source-code from WWW!

- On the IND/PE- exercises also provide your individual student email abcd1234@student.su.se
- upload the files at the course homepage under the respective assignment link.

▼ Exercises (IND)

Here, all exercises and assignments for the individual assignments are listed. Upload latest 23:59pm of the respective date.

- Exercise 1 (Deadline: Sep 7)
 - Assignment Exercise 1

SU homepage: "1.5 HEC = 40 hours"

DA $4005 = 7.5 \text{ HP} = total \ 200h$

SU homepage: "1.5 HEC = 40 hours"

- IND1 (2 Exercises)
- IND2 (2 Exercises)
- PE (2 Exercises)
- A written exam ("THEO")

DA $4005 = 7.5 \text{ HP} = total \ 200h$

= 1.5 HP = total 40h

= 1.5 HP = total 40h

= 1.5 HP = total 40h

= 3 HP = total 80h

Hence each Exercise corresponds to $\sim 20h$.

The exercises are *not* super difficult but possibly time-intensive!

START EARLY!

SU homepage: "1.5 HEC = 40 hours"

- IND1 (2 Exercises)
- IND2 (2 Exercises)
- PE (2 Exercises)
- A written exam ("THEO")

DA $4005 = 7.5 \text{ HP} = total \ 200h$

= 1.5 HP = total 40h

= 1.5 HP = total 40h

 $= 1.5 \text{ HP} = total \, 40h$

= 3 HP = total 80h

Hence each Exercise corresponds to $\sim 20h$.

The exercises are *not* super difficult but possibly time-intensive!

START EARLY! START EARLY!

SU homepage: "1.5 HEC = 40 hours"

- IND1 (2 Exercises)
- IND2 (2 Exercises)
- PE (2 Exercises)
- A written exam ("THEO")

DA $4005 = 7.5 \text{ HP} = total \ 200h$

 $= 1.5 \text{ HP} = total \, 40h$

= 1.5 HP = total 40h

 $= 1.5 \text{ HP} = total \, 40h$

= 3 HP = total 80h

Hence each Exercise corresponds to $\sim 20h$.

The exercises are *not* super difficult but possibly time-intensive!

START EARLY! START EARLY! START EARLY!

About this course

I expect that all students are familiar with big-O, big- Ω , ... notation and are able to determine the runtime of a given algorithm!

If this does not apply for you watch, the additional video "CrashCourseRuntime" in folder "Part 2 Complexity"!

About this course

I expect that all students are familiar with big-O, big- Ω , ... notation and are able to determine the runtime of a given algorithm!

If this does not apply for you watch, the additional video "CrashCourseRuntime" in folder "Part 2 Complexity"!

Content:

- Part 1 Basics (Turing Machine, Graphs)
- Part 2 Complexity
- Part 3 Shortest Path Problems
- Part 4 Dynamic Programming
- Part 5 Greedy Algorithms and Matroids
- Part 6 Approximation Algorithms
- Part 7 DS balanced (AVL) trees
- Part 8 DS Suffixtrees
- Part 9 Hash Tables and Bloom Filter
- Part 10 Selected Topic: Euklid, Golden Ratio, Fibonacci Numbers

Why?

- algorithms are central in computer science
- Design of algorithms:
 - Is algorithm correct?
 - Does algorithm terminate?
 - Is algorithm efficient?
- Efficiency: depends often on the used datastructure.

After taking the course the student shall be able to:

 develop and implement algorithms with data structures and analyze them with respect to correctness and efficiency

- develop and implement algorithms with data structures and analyze them with respect to correctness and efficiency
- compare alternative algorithms and data structures with respect to efficiency and reliability

- develop and implement algorithms with data structures and analyze them with respect to correctness and efficiency
- compare alternative algorithms and data structures with respect to efficiency and reliability
- define the concepts P, NP, NP-completeness and undecidability

- develop and implement algorithms with data structures and analyze them with respect to correctness and efficiency
- compare alternative algorithms and data structures with respect to efficiency and reliability
- define the concepts P, NP, NP-completeness and undecidability
- compare problems with respect to complexity using reductions,

- develop and implement algorithms with data structures and analyze them with respect to correctness and efficiency
- compare alternative algorithms and data structures with respect to efficiency and reliability
- define the concepts P, NP, NP-completeness and undecidability
- compare problems with respect to complexity using reductions,
- explain how problems of high complexity can be handled

- develop and implement algorithms with data structures and analyze them with respect to correctness and efficiency
- compare alternative algorithms and data structures with respect to efficiency and reliability
- define the concepts P, NP, NP-completeness and undecidability
- compare problems with respect to complexity using reductions,
- explain how problems of high complexity can be handled
- independently construct computer programs that use time and memory efficiently

- develop and implement algorithms with data structures and analyze them with respect to correctness and efficiency
- compare alternative algorithms and data structures with respect to efficiency and reliability
- define the concepts P, NP, NP-completeness and undecidability
- compare problems with respect to complexity using reductions,
- explain how problems of high complexity can be handled
- independently construct computer programs that use time and memory efficiently
- in professional life identify and attack problems that are unrealistically resource demanding or not possible to solve on a computer

<u>Aim</u>

After taking the course the student shall be able to:

- develop and implement algorithms with data structures and analyze them with respect to correctness and efficiency
- compare alternative algorithms and data structures with respect to efficiency and reliability
- define the concepts P, NP, NP-completeness and undecidability
- compare problems with respect to complexity using reductions,
- explain how problems of high complexity can be handled
- independently construct computer programs that use time and memory efficiently
- in professional life identify and attack problems that are unrealistically resource demanding or not possible to solve on a computer

Let's Get It Started!