Algorithms and Data Structures (DA4006)

Marc Hellmuth

Department of Mathematics
Stockholm University



Contents

[0 Organisational Matters|
1 Fundamentals|
I1.1  What is an algorithm?| . . . . . . . . . . . .
[1.2  Correctness of algorithms| . . . . . . . . .. .
1.3 Runtime of algorithms| . . . . . . . .. . o
I1.4  Elementary Data Structures| . . . . . . . . . .o
1.4.1 'The idea of memory allocation| . . . . . . . .. ... ... ... ... ... .. ...,
|1.§.2 Arrayl ...
143 Tinked Tastsl. . . . . . . . o o o
[1.4.4 Queues and Stacks| . . . . . .. Lo
AT TTTCEH . « o v v o o e e e e
[2” Sorting]
2.1 Insertion-Sort (Revisited)| . . . . . . . . . . .
2.2 Merge-Sort| . . . . . e e
[2.3 Heaps and Heap-Sort|. . . . . . ... ... ...
2. UWICK-DOrt|. . . . .
2.5 Lower bound for "comparison sort"|. . . . . . ... oL L
2.6 Counting-Sort|. . . . . . . . .. e e e
.................................................
I3 Searching and Search Trees|
3.1 Searching in Arrays|. . . . . . . ..
B.1.1  Tanear Searchl . . . . . . . . . L Lo
[3.1.2  Binary Search|. . . . .. ... ...
3.1.3  Jump Search| . . . ...
[3.1.4  Exponential Search|. . . . . . . ..o
B2 Search Trees|. . . . . . . . . o
[3.2.1  Binary Search Trees| . . . . . . . . . .
322 AVL Treesl. . . . . o o o e
3.2.3 Red-Black Trees| . . . . .. . .
[3.2.4  Summary |. . . ... e e e
4.2 Types and choice of hash functions| . . . . . . . . . . ... Lo
[4.2.1  Direct Addressing] . . . . . . . . . L e e
[4.2.2 "Non-Direct" Addressing| . . . . . . . . .
E3TCOIMSIONS « o o v oo e e e e e
4.4 Resolving collision| . . . . . . . . . . e
[4.4.1  Resolving collision via chaining| . . . . . . . . .. ... o oo
[4.4.2  Resolving collision via open addressingf. . . . . . . . . . . .. ... L L oL
[4.4.3  Resolving collision: summary| . . . . . . . . . ... L
4.5 Factors Affecting Hash Function Performance . . . . . . . . .. ... oo 000 L.

14
32
33
37
37
39
39

43
44
45
49
63
66
67
68



4.6 An application of Hashing: Bloom Filters| . . . . . . ... ... ... o o000 113

[ Elementary Graph Algorithms] 115
BI TIntroand Basicsl . . . . . . . .o 115
[5.2  Breadth-First Search (BES)| . . . . . . . . . .. 121

5.2.1 Is G=(V,E) connected? . . . . . . . . ... 122
5.2.2 IsG=(V,FE)atree?l. . . . . . . e 123
623 Finding spanning trees]. . . . . . o v v i i e e 124
0.2.4  Determine distances In Gl . . . . . . . . .o 125
[p.3  Depth-First Search (DES)[ . . . . . .. .. ... ... .. 136
[5.4 Kruskal Algorithm and Minimum Spanning LTees| . . . . . . . . . v v v v v v i 137

6 Questions and Answers| 142
6.1  Questions from students| . . . . . . . . ..o 142
6.2  The exam structure and exam problems| . . . . . . . . . ... o L oo 143




Abstract

Dear Students,

This manuscript serves as a summary of the main parts covered in the lecture. However, it is primarily an
automatically generated script from LaTeX Beamer slides. This means that detailed additional information
within the text is not provided. Nevertheless, I hope this summary assists you in better understanding the main
details and provides a more substantial overview than just bare slides.

Let’s get started, Marc



Chapter 0

Organisational Matters

All information / news / exercises etc.pp. can be found online: https://kurser.math.su.se/
Course: DA4006
Course examination is done in four parts:

e Home assignments ("LABO") worth 3 HP, graded A-F.

Consists of > 4 individual exercise sheets

e A written 4 hour exam ("THEQ"), worth 4.5 HP, graded A-F.

You pass the course if LABO and exam have been passed.

To pass LABO, at least 50% of the exercises must be correct (in total).
To pass THEO, at least 50% of THEO must be correct.

All solutions must be provided in English!
Team work to discuss the LABO ezercises is allowed and also recommended.
BUT:

e everyone has to hand in an individual and independent solution of the exercies
e you must be able to explain your solutions in the tutorial

e 1o copies of solutions

e always write your name on your solutions

There are deadlines when to hand-in specified at the DA4006 webpage and ex-sheets.

Hand in the respectice exercise before the end of the deadline as follows:

e LABO-exercises should be provided as single PDF-file (handwritten-scanned or latex-PDF),

except for programming exercises (here provide sre-files and a readme about how to compile or use the
prg).

e upload the files at the course homepage under the respective assignment link.
TIME MANAGEMENT

e SU homepage: "1.5 HP = 40 hours"
e LABO (> 4 Exercises) = 3 HP = total 80h

e Hence each Exercise corresponds to ~ 10 — 20h.



The exercises are not super difficult but possibly time-intensive!

START EARLY! START EARLY! START EARLY!

Students with medical diagnoses that may impair their concentration or reading ability, or anything else that
hinders them from providing exercises on time, are requested to inform me before the first exercise hand-in!

e all slides will be provided online.

e The handwritten notes I use to create content on the board are also available online.

BUT: These notes are for me to create board content for you. That means the readability of the script is
not guaranteed. So, it’s better to come to the lectures to see what I have written within the script.

course books:

‘ THOMAS H. CORMEN
CHARLES E. LEISERSON

_‘ RONALD L RIVEST
CLIFFORD STEIN

R
W .y .

-.‘ ‘ 1 M_II.'L[ON

eopies sold
werkdwice
INTRODUCTION TO
ALGORITHMS
fOURTH EOITE I
i

Second Edition

Algorithm Design

Steven S. Skiena

@ Springer

Primary course book: Introduction to Algorithms, Cormen at al

DATA
STRUCTURES

ALGORITHMS
MADE EASY

Dals Eeailvnnd ol Abghi @b Fuddbid

HNARAEIMHA KARUMANCHI

T R



Chapter 1

Fundamentals

Part 1 focuses on the following topics.

1-1 What is an algorithm?
1-2 Correctness of algorithms
1-3 Runtime of algorithms & space complexity

The latter Parts 1-1, 1-2, 1-3 will, in particular, be examined on a sorting algorithm Insertion_Sort. Further
examples will be provided. We then continue with

1-4 Elementary Data Structures

1.1 What is an algorithm?

Informally, an algorithm is a step-by-step unambiguous instructions to solve a given problem by taking some
some value(s) as input and by producing some value(s) as output.

Cooking_Pasta(Water, Pasta, Salt)
HOW TO COOK PASTA
1 Add 1/ water to pot

2 Add salt to pot ® 74 @ 0 Ol Sss - @ SSS

3 Boil-up Water \%’

al dente - 5-6 min

! pour water add salt bring to a boil
4 Add pasta to pot @ $S< ® ®

until the end - 8-10 min

5 Cook until done % N v
\w,
6 Drain water & % &

add pasta cook until done drain the water bon appetit!

7 RETURN Cooked delicious pasta
Question: unambiguous? executable by some machine/robot? . ..

A human may know how to "boil-up" water by using a cooking plate (...or open fire ...?7) but does a robot
know this?



Bogo_Sort”(n cards) BOGO SORT bt (o<

1 Align cards to a pack-of-cards @ T
N/,
2 Shuffle cards 3 times % Q\Tfi @ {l}

3 Spread cards

A

/ AN
4 IF (cards are ordered) THEN AXHRRRERRLLR -

3
==
o)

4 : .
goto step 5 ﬂii ﬁ %vre
ELSE goto step 1 ! @ﬂ R {}
5 RETURN Sorted Cart Deck 5

(780-850) Persian mathematician, astronomer, geographer, . ..

The word ’algorithm’ has its roots in the name of Persian mathematician Muhammad ibn Musa al-Khwarizmi.

He wrote a fundamental treatise on the “Hindu—Arabic numeral system” which was translated into Latin during
the 12th century.

Here: al-Khwarizmi was translated into Algorizmi

...... b

o {uemnna)

u

(1815-1852) English mathematician

*AKA stupid sort



The first computer program was written by Ada Lovelace for the “Analytical Engine” [design for a simple
mechanical computer| by Charles Babbage to compute Bernoulli numbers.

Definition (algorithm). A calculation rule for a problem is called algorithm if there is a Turing machine
equivalent to this calculation rule which stops for every input that has a solution.

The formal definition of algorithm goes back to Alan Turing who designed
Turing machines as a theoretical concept to simulate the operating principles
of a computer (central processing unit = CPU)

A Turing machine is a mathematical model of computation describing an ab-
stract machine that manipulates symbols on a strip of tape according to a
table of rules.

Tape of infinite length
A
( D)
B | xg| x2| «« | X2| X2| B

Tape Symbols

~_R/W head

Finite
Control

(1912-1954) En-
glish mathematician,
e = computer  scientist,
logician, ...

goto state 3

Whatever any computer can do, can be done by a Turing machine !!
To check whether a "calculation rule / program" is in fact an algorithm, we must design a Turing machine
mimicking these rules.

This is beyond the scope of this course.

However, to establish algorithms and to analyze their costs, we need to have a model of the implementation
technology that we will use, including a model for the resources of that technology and their costs while still
having a "correct" notion of algorithm (Turing machines).

There are other computer-models that are "equivalent" to Turing machines and that are closer to the notion of
computers that we know. This "equivalence" allows us to use these models instead.

Excellent overview of Turing machines: https://plato.stanford.edu/entries/turing-machine/
https://www.youtube.com/watch?v=dNRDvLACg5Q


https://plato.stanford.edu/entries/turing-machine/
https://www.youtube.com/watch?v=dNRDvLACg5Q

Whatever any computer can do, can be done by those models and thus, by a Turing machine !!
"Equivalent" to Turing machines are register machines. One of them are random-access machines (RAM): an
abstract model of computers that is "closest" to the common notion of a computer and where instructions are

executed one after another, with no concurrent operations.

(unlimited) memory MEM]0], MEM[1], MEM|2], ...

fixed number of registers Ry, ..., Ry
[Registers are the memory locations that the CPU can access di-
rectly. The registers contain operands or the instructions that the

processor is currently accessing.]

memory and registers store w-bit integers n € {0,...,2" — 1}
instructions:
load/store R; = MEM[j], MEM[j] = R;
basic operations on registers:
Ry, = R; + R, (arithmetic is modulo 2*!)
also Ry, = R; — R, R; * R;, RydivR;, RyimodR;
[these basic operations are "easy” to be implement on hardware]

conditional / unconditional jumps
[algorithms are lines of instructions, jump back and forth to these
lines|

costs = number of executed step-by-step instructions (i.e., each
instruction takes constant time)

Full Details about RAM in THE DESIGN AND ANALYSIS OF
COMPUTER ALGORITHMS; Aho et al. 1974

Already simplified, but typical RAM-code (here for computing Y., %)

READ n
SET R_sum =
SET R_count =

LOOP_START:
COMPARE R_count > n
IF_TRUE jump to END_LOOP

LOAD R_tmp, R_sum
ADD R_tmp, R_count
STORE R_sum, R_tmp

LOAD R_tmp2, R _count
ADD R_tmp2,

STORE R_count, R_tmp2
jump to LOOP_START

END_LOOP:
PRINT R_sum

Ezxample: Board

Main Memory System

Instruction
Address

Instruction

Data Address

Data

Central Processing Unit

Operational
Registers
Arithmetic and
Logic Unit

Program Counter

Control Unit

Input/Output System

Harvard Architecture

Harvard Architecture




/8/{—//1 000& z[dJ %Z_

1 n=2

. 2_cwnw =0

;- E_c,oo\m{': T

5. 172

(. et e

€. e Llomloee ')
&7‘ Q—ILWF: T”"P P/ZCDMVL{_ = 0'(:’1-
[O - Csum = iE

/Il ”2—+WP2: il_
13 Rtwpdr
(¢ Reroaunt =%

!g— ﬁal-o l/l'me Lf
5 22 2
6 uot Mt

g Rorep ™1
9 Lpwp Prmmp
A0 Rieem =2

- A+ 2

T /200%“[

/lz—lL(f /2(.0‘/"'"‘:3
1S 5okoh>4t+

S 3>2
6 NM’L N 90%0 L/\A—Z /é

|+ pn\er 5



Strictly speaking, we should precisely define the instructions of the RAM model and their costs (which is quite
cumbersome!). Nevertheless, the latter should give you a general idea of the term “algorithm” and we provide
here a "rough, approximate" definition:

A procedure is an algorithm if ...
..1t is a finite linear sequence of instructions (Instruction 1, followed by Instruction 2 and so on ...)
..its input is a finite set of values
..in every step only a finite amount of memory is used

.. has some finite set of values as output (in case it terminates)

instructions Example
basic arithmetics addition, subtraction, multiplication, division, floor, ceiling, modulo,. ..
data movement (save/load/copy) | init array A of size n and save number k at its i-entry (A[i] == k)
conditional execution IF (condition) THEN Instruction ELSE Some-Other-Instruction
jump GOTO instruction z (or line x)
iteration WHILE (condition) DO Instruction
REPEAT Instruction UNTIL (condition)
FOR (j =1 to n — 1) DO Instruction
recursion algorithm calls itselfe.g. n!=1-2-----(n—=1)-n=(n—-1)!-n

Classical ways to represent algorithms briefly explained on the "Sum-up" problem:
Compute total_sum = ., i for a given integer n.
Verbal " We define total _sum to be 0 and then add to total sum the integer 1, then we add 2, ..., then we add

n'll

for communication of ideas often sufficient, usually indicates only implicitly sequence of instructions
[must be careful here when it comes to checking costs!]

pseudocode

Sum(n)

diagram /flowchart (good to "see" the step-
by-step instructions)

total sum =0
FOR (i := 1 to n) DO

total sum = total sum + i i=1
PRINT total _sum

The pseudo-code description is in a "free form", mixing En- @ e
glish words and "programming-like" statements as long as it
serves the purpose of conveying —without ambiguity— how our
algorithm runs. s um=sum+i]
Some "real" programming language (here python) f=itl

def sum_up_to_n(n):
total_sum = l

for 1 in range(1, B print:sum
total_sum += 1

TRUE

print(f"The sum of i

1.2 Correctness of algorithms

We are, in particular, interested in algorithms that solve problems:



An instance of a problem consists of the input (satisfying whatever constraints are imposed in the problem
statement) needed to compute a solution to the problem.

Example: Instances of the previous "sum-up" problem are the n for a specific integer (e.g. n = 3)

An algorithm is said to be correct if, for every input instance, it halts (=terminates) with the correct output
w.r.t. the given computational problem. In this case, we also say that the algorithm solves the problem.

[ <= an incorrect algorithm might not halt at all on some input instances, or it might halt with an incorrect
answer|

Let’s have a look to a specific problem, design an algorithm and show its correctness, i.e., it solves this problem.

An Example: Sorting Problem

Given: A finite sequence of integers (a1, as...,a,)

Goal: A re-ordering (af,d) ..., a,) such that a] < a) <--- <al

n

A =(5,2,4,6) should become (2,4,5,6)

sorted list
5\-/2 4 6 A simple sorting "algorithm" idea:
2 5 4 6 We assume to have an order list (highlighted in red)
~ Then, subsequently insert the next element x into this sorted list by
comparing x with the elements in sorted list from right to left
2 4 5\_/6 We put this into an algorithm, known as Insertion_Sort.

2456

A is array of size n containing the integers, 1st entry A|0]

Insertion_Sort(A)

1 FOR (j:==1ton—1)DO

2 key:= A[j]
insert A[j] into the sorted sequence A[0...j — 1]
3 im=j—1
4 WHILE (¢ > 0 and A[i] > key)
5 Ali + 1] = A[i
0 ti=1—1

7 Ali+1] = key
& RETURN Sorted array A



Example: Insertion_Sort(A) for A =[5,2,4,6,1]:

[5, 5, 4, 6, 1] Line 5
2,5, 4, 6, 1] Line 7
[2, 5, 5, 6, 1] Line 5
(2,4, 5, 6, 1] Line 7
2,4, 5, 6, 1] Line 7
[2, 4, 5, 6, 6] Line 5
2, 4, 5, 5, 6] Line 5
2, 4, 4, 5, 6] Line 5
2,2, 4, 5, 6] Line 5
[1, 2,4, 5, 6] Line 7

This shows that Insertion_Sort correctly works precisely for the input sequence (5,2,4,6,1).

An instance of a problem consists of the input (satisfying whatever constraints are imposed in the problem
statement) needed to compute a solution to the problem.

Example: Instances of the sorting-problem are all finite sequences of integers, e.g. (1,2,3), (1,1,1,...,1),
(5,4,5,3), ...

An algorithm is correct or solves the problem if, for every input instance, it halts with the correct output
w.r.t. the given problem.

So-far, we showed that Insertion_Sort correctly works only for the specific instance (5,2,4,6,1).

Let’s prove its correctness, i.e., we show that Insertion_Sort terminates and correctly returns a sorted list for
any finite input sequence of integers.

Theorem. Insertion_Sort correctly sorts a given finite sequence A of integers.

Proof. board via loop-invariants

10



7

heorens 1 froobon_Cord cpn-r.u‘? Colves He ch-(-ru? fr-abh_..._

w: Pbseve Hoat 4 "1".1/"‘""( P ,_[j ot :

" nom 6«30:“6{7 “ oleses bed .

fn‘m'h cnpnt A o Al .. Alw-t)
fenile omlpat  —u—

" n bz bku.ul é(_ JF&/LD{ + .2 VM'MrLU; -r:,\l'

)

L

Cr
[} Mmd-flﬂ

. -L‘J*M—-imaé@
FoR mwed l";“ 3‘:. n ;{-OP_C
LS'H,I.LE : (-_C\( ( LJ)

C decrepedh (LG) 2y (€O atdow

~toeclou (én L
" H[A
) -I—CJ(M?P-AM b )

=) A(:S . -’—U‘W:M—O{"Cb .
{
/9 ,Ooql noew Cwm:_.okm s

T L\/L

e ‘ Cov,o Cnvantnts® = cfedeoied taad X Free

acewss  manlypla 2 loetnwes
/4:. (Xa o0 XW'ﬂ-) 7 o~ r‘ﬂdf

/'n fle f, I{ou,‘u.j we urle A(.{:._J') IL- oo clonts
A[f}-' AC_('?

£ e/ £n~I
gy USGRIEU

Loo,o—/'uva-n‘a-mé ?C\k}: a/( tach .S'Iﬁf/

k(d..J'-'l) ’GDM:'.H‘”A{ /4 a.-ncha—(
dbvw““ Xy .

. Kpayg bab Fen ..('oM @-rdd;
£&au .'(I) P(;() /n[p{g ot olest f J"ré& 2 tluelo - G'f FokR —LoaP

(TLI Pf/-) —u ot ewmd aj ./‘fﬂ' A TeedV 64 For toop
(T P() olels  wbun  odf . Frummades



J-”I (= Gvet Teodion ) ¢ ot bt ~A(O,0)= A [o1 scr(cOQ)
~Arhe 14 coudern Jublj
4 ,c,&,mbj 4. ¢ P[q)

7s e .

at #ax /;a,‘n{ e Coten 0D e W
PG a1 howe ok sfert of ST areedios of FR-Lap.
=> (_[) helols

Show wow  deat () helds .

2 contr ¢ [{J(’thE oo atests oy o[DUA wot Ca
(v Jth ool of Fur Lop

L 3¢ A= d—" 1

By om,ww-po«b‘uMJfL)Pg) holla -
@r‘c(()--j"’) a7 Jovbeol & ooa»/-r,wi_,y Xg . X

-1
AlD) £ A(D e .. ¢ A[&'-t) !

n‘-l[ WHILE —loo{) a{,or,,,,,‘g{ Canm
e hove AC!) = keg_
4w L4,

> LZ - A("('q-\:bu—j ) L\-l-/f:.Jh =) AL\[)’I’"(#

e

> AW £ AW £ . ALj-1) £ AL])
= A0--y) co—r\rc,%&j ordved 4 cocdecnt Xo .- X

=> Sraa <20 aAJ?./L )

I



-1:{ (-Jé([LE_(;oof) I~cn et
=2 SMe C2OMJ'Z d. , e hove )A[_r_) >/Lb(?

LS twme HobE wuhy ALY ox “hgfed”
Ao ,a./\?r AC+1) w éwug
o s>k L 720
vhal x  a L7
e Law_. zQu A- [ ,4L J /KLJ
at A0 +1) & AL . ) s Soctiol -
APy A(1) ¢ - ¢ A(t1L) & .- AC&\

R remberny K, .- <" — TC lhololy .

Sinu oo Anlho bolds for ool lelio - of FoR-laof

Al(o-n-l\ % Coled 4 coutDy s ¥ o Xm -1 /‘:l
C (m) hetd?



We have discussed so-far the topics

1-1 What is an algorithm?
We shortly explained that TMs and equivalent models (RAM) are used to define the term algorithm

Deeper details are beyond the scope of this course. Instead, we provided here a "rough, approximate"
definition:

A procedure is an algorithm if ...

..1t is a finite linear sequence of instructions (Instruction 1, followed by Instruction 2 and soon .. .)
..its input is a finite set of values
..in every step only a finite amount of memory is used

.. has some finite set of values as output (in case it terminates)

This finite linear sequence of instructions can be written using e.g. pseudo-code or flowcharts

1-2 Correctness of algorithms

An algorithm is said to be correct if, for every input instance, it halts (=terminates) with the correct
output w.r.t. the given computational problem. In this case, we also say that the algorithm solves the
problem.

Parts 1-1 and 1-2 have been examined on a sorting algorithm Insertion_Sort.

Let’s now continue with Part 1-3 "Runtime"

1.3 Runtime of algorithms

Naive idea: measure the time from start to end in (milli)seconds
say we want to know for some input N how fast the algorithm is:

N = 4000 and runtime 6.3 seconds
N = 8000 and runtime 51.1 seconds
N = 16000 and runtime 410.8 seconds

Hypothesis: For arbitrary N runtime is ~ 10719N3

not really comparable since this can differ on distinct computers.
we need a notation to classify “runtime” that is independent on the "performance” of computer.

Time complexity
NOT: measure runtime on a specific computer
BUT: determine effort for idealized computer model (e.g. RAM-model)

We need abstract measure for time complexity to estimate asymptotic costs that depends on the size of
the input

Add two numbers

1 1
+ 2
= 1 3

Takes 5 single additions.

©| 0o
| w w

7
4
1

14



Hence, addition needs max{m,n} operations (even slightly more if we consider "carryover") for two numbers
having m, resp., n digits.

There two main types of cost models:

e the unit-cost model assigns a constant cost to every machine operation, regardless of the size of the numbers
involved.

e the logarithmic-cost model, assigns a cost to every machine operation proportional to the number of bits
involved [Integer n € {0,...,2% — 1} needs w bits to be stored|

not used in this course, however, important e.g. in cryptography

In this course unit-cost model

The RAM-model contains instructions commonly found in real computers:
arithmetic (such as add, subtract, multiply, divide, remainder, floor, ceiling),

data movement (load, store, copy), and

control (conditional and unconditional branch, subroutine call and return).

Each such instruction is counted as one time-unit and thus, takes a constant amount of time.

Hence, we essentially count the number of execution of instructions (as the number of operations)

We denote with T'(|I|) the runtime of an algorithm with input I. Here, |I| is the size of the input and T'(|I]) is
the number of operations/instructions used in this algorithm with input I.

Input I = A with n entries: |I| =n
Count_Zeros(array A) variable declaration (e.g. int i, count): 2
1 int 4, count assignment statement (e.g. ¢ :== 0): 2
9 count = 0 increment (i and count) n+n
3 FOR(i =0 ton— 1) compare "A[i] == 0" n
4 IF(A[i] == 0) DO count + + Ysingle instructions = T'(n) = 3n+4

Still, this is unsatisfying, e.g. if you have T'(n) = 3n+4 vs T'(n) = 4n  (which is faster?)
For n =1,2,3,4 we have T'(n) > T'(n) and T'(n) < T"(n) for n > 5

T(|I])) = runtime of an algorithm (number of operations/instructions) with input I of size |I|.

Input I = A array of n integer: |I| =n Tiine nr
Insertion_Sort(A) Il n—1
2n—-1

1 FOR (j=1ton—1) DO T m—1
2 key = Alj] 4 2 Z;:ll t; with ¢; > 1is number of times the while-loop "test"
3= j-1 (2 comparisons) is executed for that value of j
4 WHILE (i >0 and A[i] > key) 5 Z;:ll (t; —1) here: (t; —1) since "last" test of while-loop-test
5 Ali + 1] = A[q
6 i=1—1 6 Z?;ll (t; —1) stops this loop and we have no extra run
7 Ali+1] = key 7n—1
8 RETURN Sorted array A 81

Ysingle instructions = T'(n) = 4(n — 1) + 2 Z;l;ll tj+2 Z?;ll(t] -1 +1

15



Best-case, Worst-case and average-case analysis

To understand how good or bad an algorithm is in general, we must know how it works over all instances.
The worst-case complexity of an algorithm is the function defined by the maximum number of steps/instructions
taken in any instance I of size |I|.
Ezample insertion sort: 2n? — 1

The best-case complexity of an algorithm is the function defined by the minimum number of steps/instructions
taken in any instance I of size |I|.

Example insertion sort: 6n — 5

The average-case complexity of an algorithm is the function defined by the average number of steps over all
instances I of size |I].

Example Insertion_Sort:

worst-case: A in "sorted order reversed", in which case we must compare every key = A[j] with each value in

All...j-1].
Then, body of while-loop executed j — 1 times + one extra test to terminate while-loop = t; = j
for all j.

T(n)=4(n—1)+235 7 j+2X7 (G - 1) +1
=4n—1)+2Y 0 20 -T2+
=4(n—1)+4((n?>—-n)/2) —2(n — 1) + 1 = 2n? — 1 (quadratic runtime)

best-case: A already sorted, in which case A[i] < key for each ¢ = j — 1 and thus, ¢; = 1 for all j (Line 5,6 not
executed).

T(n)=4(n—-1)+2 Z;;ll 1+404+1=4(n—-1)4+2(n—1)+1=6n—>5 (linear runtime)

average-case: Suppose that we randomly choose n numbers. How long does it take to determine where in
subarray A[l..j — 1] to insert element A[j]? On average, half the elements in A[1..j — 1] are less than A[j]
and half the elements are are greater. On average, therefore, we check half of the subarray A[l..j — 1] and
t; is about j/2. The resulting average-case running time turns out to be a quadratic function of the input
size (exercise).

In this course, we are mainly interested in the worst-case analysis, since it gives us an upper bound on the
running time for any input. Knowing it provides a guarantee that the algorithm will never take any longer.
Note, in many cases, the worst-case occurs fairly often and the average-case is often roughly as bad as the
worst-case.

As we have seen before, T'(n) is a function that depends on the input size n. However, we are, in general, not
interested in specific values for n but the asymptotic behavior of T'(n) (that is for large n).

Notation Big-O, Big-O- and Big-(:

16



Definition.
O(g(n)) = {f(n): there are positive constants ¢ and ng such that 0 < f(n) < cg(n) for all n > ny}

cg(n)

f(m)

We use O-notation to give an upper bound on a function, to within a constant factor
(asymptotic upper bound)

Q(g(n)) = {f(n): there are positive constants ¢ and ng such that 0 < cg(n) < f(n) for alln > ng}

J(n)

cg(n)

We use Q-notation to give a lower bound on a function, to within a constant factor
(asymptotic lower bound)

O(g(n)) = {f(n): there are positive constants cy1,ca and ng such that 0 < c1g(n) < f(n) < cag(n) for alln >
no}

c28(n)

J ()

c18(n)

For alln > ng , the function f(n) is equal to g(n) to within a constant factor
(asymptotically tight bound for f(n))

Theorem. f(n) € O(g(n)) and f(n) € Q(g(n)) if and only if f(n) € O(g(n)).

[proof exercise|
Examples.

17



For f(n) = 0.5n% + 3n show:
e f(n) € O(n?); f(n) € Q(n?) (and thus, f(n) € O(n?)).
e f(n) ¢ O(n); f(n) € Q(n) (and thus, f(n) ¢ O(n)).
o f(n) € O(n®); f(n) ¢ Qn?) (and thus, f(n) ¢ O(n°)).
Show f(n) =2"*! € ©(2")
For f(n) = n?(sin(n))? + 50n show:
e f(n) € O(n?) and f(n) € Q(n).

50000

40000

~30000

20000

~10000

100 120 140 160
1 1 1

50n < n?sin(n) < 22

18



0, <, ©-ndlahvn

> l(n)- %

2
zh +23n

\

f —[L("‘L) )

0(*),

6 (u*)

_(‘(u le JZ(ML): Mewtt  ghow et pPes- coust Co )t at,

C4j(n)= Ca- w? 5:@(\'\_)’

%h"-tgn_
=" C.on? & E"‘z"'g"" [—fiu\z
(Cn'ﬂi)“’l":sh I.v\/
(c1-3)n =3
botds c.q fw c= % &
Wz o1

ph)@OCMZX:

¥ uznh,

e b 'wf,uu exci b ()as. coust o o «1&-

= CQ_VLZ 'bL M.Zvlc
=5 a 2 2 -3 ( t
= (3 c?_)u

e

£ln) e O (nu?):

choote ¢4 =

S
N
~



> /() -

d O(a):

e Nlu)-

=N @(“32 v b

O0(n)
g h"‘l‘gw 4

[NTEEENARN

w2 123w 2

£ fLin)

%h"i—;wﬁ' c-n g;.r.fawe weit. € no2d
L

all wzug ?
a
Tnr g (c-z)ow [ -2
nw ¢ 2e-6

Fhoe ¢ -\-anf on n>2c-6 VMZlﬂo’.o
sue cis ficed b

Wtin 2Cn

(R
S

9—3_Cr\l-

s1v

wo>12c

cliocote C=4-| V'-o=2

b\Zmo:L., c=4 .



3
B f(n) - fnrtzn €06V

2

452,(»3)
<€ 0(w3) . gl_-p.z+3|,, ¢ cnd
0 £ ca®-5nr-2n
= nlw*-%fw-3) nNzh,20
=2 bhew s cu“-ﬁiu-g =0 ?

41 +(’—g_
- 5 ‘5. -
l/\,,”_ 2 H+"t3 .(J awy c>0}
2C Smﬂ e =d
- a
C_'l- "i'-"—'[/lz,).f 0,5t 35
2 2

4 SLe)

c-on? e Lwtedn | %

(_'__Q) A[w):éh;—%hl—gn £ 0

Sl (o Qﬂﬂ_c‘ﬂ P 0‘( b zoles)

h L)
30[ >0 ¢ wﬂm(— S H-U‘L el
. no ne 4t
J w
0

o ol h>n,
lvv\.'|,l JENE——

,‘( ot Aotds (u) €0

e=> cu®<c Luttbu



) e 911?

lm-rfl - .},,)_W -5 ,Z-Zhe zla.-r’l c 2_'2-'4

> 4[0\): nt (dm(n))? +§On € gii))

Suln ) 24 = ;lf(_m) 2 NteSO0n £ cn®
-—
¢=> so0 = @_0.,\ - cVu
SO SC_\-m. c'=
{GJM = SO
e 40—-\ e O(uY)

n’-(sﬁ«(u)\"‘?_o => gl 2 SO ¥ wuzd = g(.ﬂ)éﬁ(mx'



Insertion-sort revisited:

Exerc,

best-case: T(n) =6n —5 =—= T(n) € Q(n)

worst-case: T'(n) = 2n? — 12 T(n) € O(n?)

Thus, the running time of insertion-sort is in O(n?), that is, no matter what particular input of size n is chosen,
the running time on that input is always bounded from above by some function cn? for some constants ¢, ng > 0
and all n > ng.

At the same time, the running time of insertion-sort is in 2(n), that is, no matter what particular input of size
n is chosen, the running time on that input is at least cn, for some constants ¢,ng > 0 and all n > ng.

Moreover, these bounds are asymptotically as tight as possible:
The running time of insertion-sort is not (n?), since there exists an input for which insertion sort runs in ©(n)
time (e.g., when the input is already sorted).

It is not contradictory, however, to say that the worst-case running time of insertion sort is (n?) since there
exists an input that causes the algorithm to take Q(n?) time.

Let f(n) and g(n) be asymptotically positive functions.
Then, for T € {0, Q, ©}, it holds that
o f(n) € Y(g(n)) and g(n) € T(h(n)) implies f(n) € T(h(n)) [transitivity]| proof board

o f(n) € T(f(n)) [reflexivity] proof exercise

Moreover, it holds that

e f(n) € ©(g(n)) if and only if g(n) € O(f(n)) [symmetry] proof exercise

e f(n) € O(g(n)) if and only if g(n) € Q(f(n)) [transpose symmetry] proof exercise

23



Trovn Ty fla) e 0(;&)) Y J(w)e Ot (=)
= %(M) e 0(4.(-),

taonér .‘l'(u») € 0(‘9(")) = T ne ot -F(«—-)&c-yl'«) Yu2uo r
‘70')& O(A("')) = ac', Vl,,l 4t J[u) < G'-r&.(h) ffta?_mo\ E
[ﬂ/" A/o Z heax {M-p, M—o‘l P e 2 hax 46, C(j
T: 1£(.,‘)e C_.JC».Jg CJ"") ¥ n>2 Mo 2uo
-[f 9("‘) < C-‘A("')é- ﬁ"&(u) ‘V w2 4/0 Z(A,\
T&E. 1) ﬁyth)e C(C L) = €% 4()= K 4.
Pa;.wﬁ.ﬂ'
Yusz W,

T {0 e o(4(w).

[S,‘m:'hr ﬂ/ymw‘ﬁl fo_r L ( 9)

N



O(...) (rt=runtime)

typical framework

typical examples

O(1) constant rt
O(logn) logarithmic rt
O(n) linear rt

O(n?) quadratic rt

O(n?) cubic 1t

a=b+c // if (a<b)

while(N>1) N = N/2

for(i=0; i<m; i++){...}

for(i=0; i<n; i++)

for(j=0; j<mn; j++) {...}

for(i=0; i<n; i++)
for(j=0; j<n; j++)

assignments, in/output,
32/64bit-arithmetic,
cases

binary search

loop
find the maximum

double loop,
check all pairs

triple loop,
check all triples

for(k=0; k<n; k++) {...}

see combinatorial lecture;) | exhaustive search
check all subsets
Instead of f(n) € O(g(n)) one often writes f(n) = O(g(n)) (similar for 2, ©)

O(2™) exponential rt

This is sometimes convenient when establishing certain estimations or calculations.

IMPORTANT NOT !!! O(g(n)) = f(n)
Example
2n2 4+ 3n + 1 = 2n? + O(n) means that there is some anonymous function f(n) € ©(n) that we do not care to

name, such that 2n? + 3n + 1 = 2n? + f(n).

This can help eliminate inessential detail and clutter in an equation and allows us also to write for T € {O,Q, 0}:

e T(f(n))+T(g(n)) = T(f(n) + g(n)) = T(max(f(n), g(n)))
o ¢ T(f(n)) =T(c- f(n))
e T(f(n))-T(g(n)) =T(f(n)-g(n))
Proof of O(f(n)) + O(g(n)) = O(f(n) + g(n)) = O(max(f(n),g(n))):

proof next slides
proof exercise

proof exercise

We need to show that for any f(n) € O(f(n)) and §(n) € O(g(n)) it holds that

h(n) = f(n) +§(n) € O(f(n) + g(n))
f(n) € O(f(n)) = f(n) < ¢ f(n) for some constants ¢, ny > 0 and all n > n},

g(n) € O(g(n)) = g(n) < ’g(n) for some constants ¢’,nj > 0 and all n > n{

Hence, h(n) € O(f(n) + g(n)).

Since f(n) € O(f(n)) and §(n) € O(g(n)) have been arbitrarily chosen, we have
O(f(n)) + O(g(n)) = O(f(n) + g(n)).

Let h(n) € O(f(n) + g(n)).

= h(n) < c(f(n) + g(n)) for some constants ¢,ng > 0 and all n > ng

25



= h(n) < c-2-max{f(n),g(n)}
= h(n) < é-max{f(n),g(n)} with ¢ = 2¢
(max(f(n),g(n)))

)
Since h(n) € O(f(n) 4+ g(n)) has been arbitrarily chosen we have

O(f(n) +g(n)) = O(max(f(n),g(n)))

= h(n) €

Exmpl: Applying O(f(n)) + O(g(n)) = O(max(f(n), g(n))) and O(f(n)) - O(g(n)) = O(f(n) - g(n))

Do_Smth(int n)
1 PRINT "Hello World"
2 FOR (i=0ton—1) DO

3 1:=1+1

4 IF (n is even) THEN RETURN 0
) ELSE

6 FOR (j =0 ton — 1) DO

7 j=7+1

All basic-instructions (eg. PRINT, i =0, j := j + 1, RETURN 0, ...) in O(1) time

Do_Smth consists of two main-parts:
A; = PRINT "Hello World" and A5 = Line 2-7

Hence, runtime of DO SMTH is in O(1)+ runtime A2 = ezamine As !
runtime Ao — Line 2-7
The most expensive task within the loop in Line 2 is in O(n):
Line 3: O(1)
Line 4: O(1) + O(1) = O(max(1,1)) = O(1)
Line 5: O(1)
Line 6-7: O(n)-O(1) = O(n -1) = O(n)
Line 3-7: O(1) + O(1) + O(1) + O(n) = O(max(1,1,1,n)) = O(n)
FOR-loop in Line 2 runs n times. runtime Ay= O(n)-O(n) = O(n-n) = O(n?)

Runtime DO SMTH is in O(1)+ runtime Ay = O(1) + O(n?) = O(max(1,n?)) = O(n?)

Summary up to here

e O(g(n)) = {f(n): 3 constants ¢,ng > 0 such that 0 < f(n) for all n > ng}

< cg(n)
o Q(g(n)) = {f(n): 3 constants ¢, ng > 0 such that 0 < cg(n) < f(n) for all n > ng}
<

e O(g(n)) = {f(n): 3 constants c1,c2,no > 0 such that 0 < c1g(n) < f(n) < cag(n) for all n > ng}
Theorem: f(n) € O(g(n)) and f(n) € Q(g(n)) if and only if f(n) € O(g(n)).
Let f(n) and g(n) be asymptotically positive functions and T € {O,Q, ©}. Then,

e f(n) € Y(g(n)) and g(n) € T(h(n)) implies f(n) € T(h(n)) [transitivity]

o f(n) € T(f(n)) [reflexivity]

26



Moreover, it holds that
e f(n) € ©(g(n)) if and only if g(n) € O(f(n)) [symmetry]

e f(n) € O(g(n)) if and only if g(n) € Q(f(n)) [transpose symmetry]

The following rules can be applied:

o T(f(n) + Ylg(n) = T(f(n) + g(n)) = T(max(f(n), g(n)))
o ¢ T(f(n) = T(c- f(n))

It could be that some of these equations must be proven in exercises or the exam!

Further example

Halve(number n)

WHILE (n > 1) DO
A R EAG
n=1% 2
= 6(1) + (0(1) + T(})) = 2-6(1) + T(55)
—2.0(1) + (6(1) +T(g)) =3.0(1) + T(%)
n
= N-O(1) + T( %))
How often can one repeat this, that is, what is N7
In other words: For which k = 5% does Halve(k) terminate?
Answer: Forany k <1 <+= gx <1 <= n < 2N = logy(n) < N
n
Put N = log,(n) and note T'(1) = O(1) : T(n) = N -O(1) +T(2—N)

= log,(n) - ©(1) + T(1)

= O(logy(n)) - O(1) + ©(1)

= O(logy(n) - 1) + ©(1)

= O(max{logy(n),1}) = O(logy(n))

Iterative vs. recursive algorithms

iterative recursive
Sum(n)
Sum(int n)
total _sum =0 IF(n = 1) THEN RETURN 1
FOR (i =1 to n) DO RETURN n + SuM(n — 1)
total _sum = total _sum +1
PRINT total _sum

What are these algorithms doing? Answer: Sum computes the sum Z?:l i, where n > 1.

27



iterative (n = 4) recursive (n = 4)

total _sum =0 RETURN 4 + SumM(3) (the return value of Sum(4))
total _sum:=0+1=1 | RETURN 3 + SuM(2) (the return value of Sum(3))
total _sum:=14+2=3 | RETURN 2 + SumM(1) (the return value of Sum(2))
total _sum :=3+3=6 | RETURN 1 (the return value of Sum(1)) [Sum(1) =1/
total_sum =6+4=10| = 2+ SuM(l)=2+1=3 [Sum(2) =3/

— 3+ SuM(2) =3+3 =6 [SuM(3) =6/

= 44 SuM(3) =4+ 6 =10 [Sum(4) = 10/

Runtime iterative Sum: ©O(n) [Exercise]
Runtime recursive SUM:

Tn)=0(1)+T(n—-1)
o)+ O +T(n—2)=2-0(1)+T(n—2)

= (n.— 1)0(1) + T(1) € O(n) since T(1) € O(1)

Often recurrences come in the form
T(n) = aT(n/b) + f(n)

with constants ¢ > 1 and b > 1.

n € N> is the input size

a is the number of subproblems in the recursion

n/b is the size of a single subproblem and means either [n/b] or [n/b]

f(n) denotes the cost incurred by dividing the problem and combining the partial solutions
Here, we assume that f(n) = ©(n?) for some d > 0.

Theorem. Master Theorem [simplified version/
Leta>1,b>1 and d > 0 be constants and n € N>1. If T(n) = aT(n/b) + O(n?), then

0(n?) if a < b?
T(n) =4 O(ntlogyn) ifa=>be
O(nloe(2)y  ifa > b?

proof: For simplicity write n? = ©(n?)

+n? //use formular for input of size n/b
)+ (B)Y +n? =a®T(H) + a(3)? +n? //use formular for input of size n/b?

b b
=a?[aT (&) + (&)Y +a(P)? +n? = a>T(&) + a*(3)? + a(2)? + n?

=ad"T(%) + Zk:é a’ (i)d by induction (exercise)

We have T'(n) = a*T'(%) + n? Zf;ol (b%)j forall k > 1

*[2] denotes the least integer greater than or equal to x
|2] denotes the greatest integer less than or equal to x.

28



T'(1) terminates.
Hence, it terminates for k for which T'(1) = T'(§) holds

= 1=1 < F=n < k=log,(n)

oF
Hence, we can write: T(n) = alogb(”)T(blogb(n)) +nd Zlogb(”) 1 (Z;Ld)
Since T(blogb(n)) T(1) we have: T(n) = ©(a'ss(™) nd Zlogb(n (%) j
Since a'°8:(") = plogs(@) (egercise!), we have: T(n) = ©(n'°s(a)) + nd Elogb(”) ! (b%)j

We have T'(n) = @(nlogb(a)) + nd Z;?:g(b)(n)*l (b%)j

We consider now the three cases: a < b%, a = b? and a > b?

Case a < b®: Zlogb(n) ! (%) € 0(1)

=0

ST () 2 ()" =1 = ST (@) € 00)
)j

Slmit (a) ¢ o(1)

=
Y

log,(n)—1
SRE T

IN

Zl=

Z;'io (I%)j geom__series R O(1) //since o €(0,1) and constant

T(n) = O(n'o5(®) 4 nd Y181 ()7
= O(n'5 (@) 4 nle(1)
_@( logy, ( a)+n )

Since a < b% we have log; (a) < log, (b%) = d and therefore, T'(n) = O(n? + n?) = O(n?) as desired

Case a = b «— ,%:1

log, (n)—1 7 g \J log,(n)—1
SIS () = ST 1 = logy(n)
T(n) = O(®(®) + n log, (n)
Since a = b? we have log; (a) = log;, (b%) = d and therefore, T'(n) = ©(n?) + n?log,(n)= O(nlog,(n))

logb
log, (

Since log,(n) = and log, (2) is constant, we have ©(log,(n)) = ©(log,(n)) and thus,

T(n) = O(n%logy(n)) as desired

Case a > b%:
logy (n)—1
log,(n)—1 / g \J geom. sum (b%) £p(m) —1 exgc.e a \logy(n) Cxcrc.(lig—rulcs)@ nlog,(a)
Sl (g e G e () 1) g gy

29



T(n) = @(nlogb(a)) +n’e (M) — @(nlogb(a)) as desired

nd

Example:

Some_Rec(n)

IF (n > 1) THEN Suppose someTask has runtime in ©(n°)
someTask — T(n) = 2T(n/3) + O(n®) ,a = 2,b=3,d =5
Some_Rec(n/3) 4 Some_Rec(n/3) — a<b! — T(n) =)

Example:
Halve(n)

IF (n > 1) THEN Halve(n/2)
Runtime without Master Theorem: O(logy(n)) (similar arguments as for Halve above with WHILE-loop)
With Master Theorem: T'(n) = T(n/2) + O(1)

— a=1,b=2,d=0

In formula above: 1 = a = b% = 2° and thus, runtime is in ©(nlog,n) = O(n°log, n) = O(log, n)
Further examples: Assume that d =2 and b = 3:
2
a=8 T(n)=8T(2)+0O(n?) =% T(n) = O(n?)
a=9: T(n)=9T(%)+O(n?) o8 T(n) = ©(n?logy n)

a=10: T(n)=107(2) + O(n2) 225 T(n) = O(nloss(10))

30



Space complexity is a measure of the amount of working storage an algorithm needs and is also often expressed
asymptotically in big-O, Big-2, Big-O notation.

Some_Sum(int z, y, 2)
mtr=x+y+z
RETURN r
Requires 3 units of space for the parameters x,y, z and 1 for the local variable r.

Space complexity is in O(1)

Sum(array a of length n)
intr=0
FOR (i = 1 to n) DO r :== r + al]
RETURN r
Requires n units of space for array a and 2 for the local variables r and i.

Space complexity is in O(n)

Fact_rec(int n)

Fact_iter(int n) IF(n == 0 or n == 1) THEN
int fac =1 RETURN 1
FOR (i =1 to n) DO ELSE
fac :=fac-1¢ RETURN n - Fact_rec(n — 1)
RETURN fac

requires 1 space units for the variable n
requires 3 space units for the variables n, fac
and ¢

= O(1) space.

Now, examine the extra space that is taken by the algorithm tem-
porarily to finish its work [auxiliary space]:

for n the return-value Fact_rec(n — 1) must temporarily be stored
for n — 1 the return-value Fact_rec(n — 2) must temporarily be
stored

for 2 the return-value Fact_rec(1) must temporarily be stored
for 1 the return-value is 1

At this point the values can be used to compute Fact_rec(n) and
we temporarily stored n — 1 = O(n) variables.

= O(n) space
But be careful here: If things are passed by pointer or reference, then space is shared [later].
We mainly focus here on time complexity

Side Note:

During each time step, you can only access one memory location. Therefore you can never access more memory
locations than you have time

—> space complexity is bounded by time complexity

31



Does runtime matter?

insertion-sort merge-sort [later/
runtime O(n?) O(nlogy(n))

Should we care about factor n vs logy(n) ¢

For large enough n and constant ¢, we have

insertion-sort  merge-sort

runtime c-n? c-nlogy(n)

Say ¢ = 100 and n = 107 (e.g. list of population in Sweden). Suppose we have a computer that can perform
10%0p/s where op/s = operations per seconds.

7\2
insertion-sort; 100:(100%p _ 10%%p _ 17, ~ 115 days

merge-sort:

10%0p/s 10%p/s —

100-107 log, (10")op __ 10%-log,(107)op _ log2(107)5 ~ 245

10%0p/s - 10%0p/s
Runtime matters !
1.4 Elementary Data Structures

The right organizational form and choice of data structure significantly impact the efficiency of data
operations.

Example:

Consider a phone book. There it is easy to find a phone number for a given name based on the alphabetical
order.

What if we are interested in the reverse task (finding for a given number the name)? Ideas?

The optimal choice of a data structure is not always obvious and one data structure might be very suitable
for one task but not for some other

Determining an efficient data structure is usually influenced by the operations needed later on the data
(searching, replacing, re-sorting, ...)

32



1.4.1 The idea of memory allocation

How does memory work and how is this related to Data Structures?

Main Memory System

Instruction

Address Instruction Data

Data Address

Central Processing Unit

Operational
Registers
Arithmetic and
Logic Unit

Program Counter

Control Unit

Input/Output System

Harvard Architecture

Expansion Slots Input/ Output
GraphicsCard , Sound card J’ ‘L ‘L Connection Sockets

—a ,.“.,.. : T : Q

Microprocessor
CPU Socket

Controller Chip
North Bridge

\ Main System Memory
RAM Module Slots

Controller Chip South Bridge

CMOS Battery

mainboard of a computer

33



Main memory consists of a number of regularly arranged memory cells,
comparable to the compartments of a cabinet.

Since memory cells are regularly arranged, they can be numbered consecutively.
Each cell therefore has a unique number (=address).

34



All memory cells are the same size and can store a value (number, character, ... ).
This value is a fixed-length sequence of Os and 1s (e.g. 1byte = 8 bits)

[8 bit per cell is pure convention (a few exceptions exist)].

But also "longer" information can be stored using "chunks of cells"

(e.g., the first 8bits of a 32bit integer n [to store n we need then 4 cells each of size 1byte]

or the first 3 characters of the alphabet)
Difference between a 32-bit and a 64-bit architecture? n-bit architecure means that CPU can handle data in
chunks of n-bit at a time. Thus, n-bit computer can can process data and perform calculations on numbers
that are n-bits long.

32-bit system that can access 232 (or 4,294,967,296) bytes of RAM. Meanwhile, a 64-bit processor can handle
264 (or 18,446,744,073,709,551,616) bytes of RAM. In other words, a 64-bit processor can process more data
than 4 billion 32-bit processors combined.

35



The value can also be the address of another memory cell. In this case, we refer to it as a pointer.

A variable in (compiled) source-code refers to one or more consecutive cells in memory that store the "value/information"

we assigned to this variable.

Variables can thus contain values or be pointers to another variable.

Storage of information in different languages (here as example C/ Python )

Memory C Memory "somewhat similar to what Python does"
int X /initinteger variable x
int Y //initinteger variable y
x =5/ assign 5 to x
. X = 5 //init cell for x and 5 and x contains address of 5
Adr. y = 10 //assign5toy Adr .
. "o/ s ) : y = 10 //init cell for y and 10 and y contains address of 10
printf ("%i", x) /prints's 6 int (x)
. . = rint(X) // prints "5"
rintf ("%i", y) /prints 10’ p P
y 7 22 bd int (y)
. rin // prints "10"
6 - printf ("Yp", &x) /prints 7" (address of ) 8 21 p yJ e
7 10 x x =y y X=Y //let x "point to" address that y "points to"
8 10 y printf Yin , x) / prints *10" As "5" is no longer used, memory cell 21 is freed up
intf ( "7 " & ) ) ) [garbage collector].
prin (< X) // prints "7" (address of x) 21 42 42 print (X) J/ prints "10"
o - . int PX; //init pointer px that point to some integer 20 10 10 y=42 /l'y contains address of 42
PX  variable print (x) /prints 10"
px = &x;

printf ("%p", px); /prints 7" (content of px)
printf ("%i", *px); / prints 10" (content of
content of px [Dereference])

many famous games are based on game engines written in C/C++
(Fortnite, GTA, DOOM, Civilization,...)

Pointer = variable p that stores address of another
"

print (y) /prints 42"

In python there are lot of secrets in the memory allocation that cannot directly be handled
by user and a lot of vodoo (incl. garbage collection) takes control about the latter

memory cell containing information about "some object

in symbols "p — x "

Data structures can be classified as either contiguous or linked, depending upon whether they are based on

arrays or pointers:

e Contiguously-allocated structures are composed of single slabs of memory, and include arrays, ma-

trices, heaps, and hash tables.

e Linked data structures are composed of distinct chunks of memory bound together by pointers, and

include lists, trees, and graph adjacency lists.

36



1.4.2 Array

The array is the fundamental contiguously-allocated data structure. Arrays are structures of fixed-size data
records such that each element can be efficiently located by its index (or address).

Analogy/Example:
Init new array L of length 3 [=allocate 3 consecutive cells (here the ones with address 13,14,15)]

and put L[1] =a, L[2] = b, L[3] = ¢

Advantages:

e Constant-time access given the index
Because the index of each element maps directly to a particular memory address, we can access arbitrary
data items instantly provided we know the index.
e Space efficiency
Arrays consist purely of data, so no space is wasted with links or other formatting information.
Further, end-of-record information is not needed because arrays are built from fixed-size records.

Disadvantages:

e Fixed size and content
An array can only save one type of data (e.g. only integer, or only bool, ...)
One cannot adjust the size of an array in the middle of a program’s execution

Our program will fail soon as we try to add an (n + 1)-entry if only space for n records was allocated (=
overflow). This can be compensated by allocating extremely large arrays, but this can waste space.

1.4.3 Linked Lists

A (single) linked list is a data structure in which the elements are arranged in a linear order.
Each list element is an object with an attribute key (data) and one pointer: next.
Last element points to NIL. Head points to first element.

Kc-, heet
R
Olu'u;f X
Kcy heet
oe———| 9 —1— 1 T—» 4 (ML
HEAD
Object x

37



Kc-/ heet
& 9| | T4 | T 1|
Obd'u.f X
kcy hetl ‘5
o » —1— -T— -T—
HEAD 4 Lt dior Ve
Obd'c.cf x
@ > » 9 —-1—> N
HEAD 4 1 e

x.next points to its successor in the linked list
x.key is the data stored in object x (here x.key = 16)

Unlike an array in which the linear order is determined by the array indices, the order in a linked list is
determined by a pointer in each object.

The list elements can be scattered arbitrarily throughout the memory; in particular, it is no longer necessary
to preallocate a region of sufficient size to accommodate all list elements.

Instead, the occupied memory space dynamically adjusts to the current size of the list. However, one needs
memory space not only for the list elements themselves but also for the pointers.

Such linked lists can be used to realize "dynamic sets" (here the set {1,4,9,16})
Suppose a linked list L and an array A is sorted:

How easy is it in L, resp., A to remove an object such that L, resp., A stays sorted?

A =[1,4,9,16] and remove A[l] = 4:
A[l] = A[2], A]2] = A[3], A[3] =fantasy number "42" stating "A[3] is not in use"
= O(|A|) time

L =11,4,9,16] remove x (say the one with x.key = 4 and assume we know the predecessor 2’ of x)
2/ .next = x.next
= O(|1]) time

Keeping track of predecessor can be done more efficiently with doubly linked list:

Each list element is an object with an attribute key (data) and two pointers: next, prev.

plev | Key
[ b o |1k

HEAD

0 bl}' et X

Advantages:

e New elements can be placed anywhere in memory and added in constant time before or after a given
element by changing the pointers.

Disadvantages:

e When searching for an element, you have to go through the list from the first (or last) element to the
respective position.

Searching in (sorted) lists L only takes O(|L|) time.

38



1.4.4 Queues and Stacks

Stacks and queues are dynamic sets in which the position of elements inserted / removed from the set is
prespecified by a particular order [can be realized by using e.g. single-linked lists].
Stacks follow LIFO = last-in, first-out

e S.push(z): Inserts item z at the top (last item) of stack S.
e S.pop(): Removes the top item of stack S.

e S.top(): Returns the top item of stack S.

S: 12| — |6] — |7]
S.push(3): 2| = |6] — |7] — |3]
S.top(): returns 3

S.pop(): modifies S to |2| — |6] — |7|

Queues follow FIFO = first in, first out
e ().enqueue(x): Inserts item x at the back (last item) of queue Q.
e ().dequeue(): Removes the first item from queue Q.

e ().front(): Returns the first item from queue Q.

Q: 2 = 16] = |7]
Q.enqueue(3):  [2] = |6] = |7] — |3]
Q front(): returns 2

Q.dequeue():  modifies Q to |6] — |7| — |3]

1.4.5 Trees

Trees form a more general framework than linked list and are defined as "special graphs".
Let us start with the formal definition first.

The next slide contains a lot of definitions that we also need later on (e.g. for heaps, binary search trees, AVL
trees, ...). Most of these defs refer Sec B4 and B5 in the Cormen et al. course-book.

BUT don’t be afraid, they are easy to grasp: STEP-BY-STEP and stay with me!
[for all we give examples - board!!!]

A graph G = (V, E) is a tupel consisting of a vertex set V := V(@) and an edge set E(G) := E that is a subset
of the 2-elementary subsets of V.

A path (of length k) is a sequence P = (vg,v1,...,v;) of vertices such that {v;,v;41} € FE, 0 < i < k.

P = (vo,v1,...,vg) is also called vovg-path and said to connect vy and vg.
A path P is simple if the vertices vg,v1,..., v, are pairwise distinct. Note that P = (vp) is a simple path of
length 0.

A simple cycle C' = (vg, v1,..., vk, v0) of length k 4 1 is defined by:
P = (vo,v1,...,v;) is a simple path of length k& > 2 and {vg,vo} € E.

A graph G is connected if for any two vertices x,y € V(G) there is an zy-path.
Graphs without simple cycles are called acyclic or forest.

A connected acyclic graph is a tree.

39



Theorem. The following statements are equivalent for every graph G = (V, E) (exercise):
1. G is a tree.
2. Any two vertices in G are connected by a unique simple path.
3. G is connected, and |E| = |V|— 1.
4. G is acyclic, and |E| = |V| — 1.

A tree T'= (V, E) is rooted if there is a distinguished vertex p € V, called the root of T

For a rooted tree we can define a partial order <7 on V such x =<7 y if y lies on the unique path from the root
p to x.

If © <7 gy, then y is an ancestor of x and x a descendant of y

If x <7 y and {z,y} € E, then z is child of y and y a parent of x.

A vertex in T without any children is a leaf. A vertex that has a child is an internal or inner vertex.
2 vertices with the same parent are siblings.

A rooted tree is ordered if for every vertex v its children are ordered.

40



@AS(Cs: ¢ en (pm(t4>

64‘9\/&1\

A qept G= WE) Wi V{42,245, tf
& 4 < £ E - ;(4,2‘/ (251, ;'2'7)() {Z'gg/
2\-@ b303, (353, 15,63}
3 6
( conunecled)

pK P = (4,2,7,2)2,5_/ onme ch

145 of lagth
Luot 5,\,‘,‘/1,{(,] 5

S /mple /alv/ﬁ\ eq P= (//,2,,5_) (1,,40/{4 < (# CJZM)

cyele  P=(243:%.2)

6 uot coumecked D 1 c
chwa/{;\rmt >‘ I/(

- R

coata cycéb_j
<

SN

V@méaa/ {7‘(4," £ voot m.omalb?
1 \ of’/vawr\ o™ -th:?
&

28
8
15 6./ \

qo a4

S<z_4

T

1 /'(fkrﬁmf 0/ 3 ) S =< el lel 94[ 1
Ao ses ,ém‘é/&é.g&»ﬁéé/

2 £ 3 oace s:b//ﬂ/’%

/5 ‘R(&pb\m a/“'hdm?d
1“6 /\ 0

79 a4 but no iyt 0.

dmwr‘mj 4:1,-1\(4'&4 wdor  ou chllhte 4.;}

Lo of b
" A4 ﬁ?/‘v‘”f'w




A rooted tree T is binary if each vertex as at most two children. If T is ordered and binary, then there is a
clear distinction between right and left child (even if a vertex has only child).

R oH|

roet Toe[LEFT] Key
b 4 i)

Y, 161
2 e / \ \
To@| LEFT| Key |Ri6HT For g e

/ < \ ve| &
° 3 /] N\ AN
. ToP | LEFT| ey [Ribt ToP | LEFT| Key |Riond] \
m| O |wn we| §

RtoHT]

ToP | LEFT| Key |Rtokd]

G ve| 3 |on

Advantages:

e New elements can be placed anywhere in memory and added in constant time before or after a given
element by changing the pointers.

e Searching in a sorted tree takes O(h) time, with h = height of tree (=longest simple path from root to
some leaf).

In so-called “balanced trees” h € O(logn) where n = number of vertex (key/data) stored in T [details in
upcoming lectures|

Disadvantages:
e Searching in “non-balanced” tree O(|n|) time (as in linked-lists)

e Making a non-balanced tree to a balanced one gets tricky (in particular, insertion of elements is more
complicated)

Traversal of trees (more details in upcoming lectures).

Preorder:
1. wisit current vertex
2. recursively traverse left subtree

3. recursively traverse right subtree

Postorder:
1. recursively traverse left subtree
2. recursively traverse right subtree

3. wvisit current vertex

Inorder:
1. recursively traverse left subtree

2. wvisit current vertex

3. recursively traverse right subtree )
numbers in squares =

order in which nodes are visited

Plenty of other data structures exist and we will examine some of them later in the course

42



Chapter 2

Sorting

e Investigations by computer manufacturers and users have shown for many years that more than a quarter
of commercially consumed computing time is dedicated to sorting operations.

e It is therefore not surprising that significant efforts have been made to develop the most efficient procedures

for sorting data using computers.

e The accumulated knowledge about sorting algorithms now fills volumes. Still, new insights into sorting
continue to appear in scientific journals, and numerous theoretically and practically important problems
related to the task of sorting a set of data remain unresolved.

Given: A sequence of integers (a1, az...,a,)
Goal: A re-ordering (af,dj...,a,) such that af < a)h <---<al,
Example: A = (5,2,2,4,6) should become (2,2,4,5,6)

e In practice, the numbers to be sorted are rarely isolated values.

e We usually deal with a collection of data called a record.

Each record contains a key, which is the value to be sorted.

The remainder of the record consists of satellite data, which are usually carried around with the key.

e In practice, when a sorting algorithm permutes the keys, it must permute the satellite data as well. If
each record includes a large amount of satellite data, we often permute an array of pointers to the records
rather than the records themselves in order to minimize data movement.

Example: key (birth year)

sat-data (name)

sat-data (living town)

2000
1980
1988
key (birth year)

Max

Anna

Paula

sat-data (name)

Linkoping
Uppsala
Stockholm

sat-data (living town)

1980
1988
2000

Example:

Anna
Paula
Max

key = birth ye

sat-data (birth year) | key (name)

Uppsala
Stockholm
Linkoping
ar

sat-data (living town)

2000
1980
1988

Max
Anna
Paula

43

Linkoping
Uppsala
Stockholm




sat-data (birth year) | key (name) | sat-data (living town)

1980 Anna Uppsala
2000 Max Link6ping
1988 Paula Stockholm

key = name

To understand the principles of the basic sorting algorithms we focus here mainly on sequences of integers
only.

2.1 Insertion-Sort (Revisited)

Given: A sequence of integers (ai,as...,a,)
Goal: A re-ordering (af,a}...,a,) such that af <ah <.-- <al,

Example: A= (5,2,2,4,6) should become (2,2,4,5,6)

Recap (Insertion_Sort):

sorted list
>~ A simple sorting "algorithm" idea:
2 5 4 6 We assume to have an order list (highlighted in red)
~ Then, subsequently insert the next element x into this sorted list by

2 4 5 6 comparing x with the elements in sorted list from right to left
~ We put this into an algorithm, known as Insertion_Sort.

2456

Insertion_Sort sorts the input numbers in place: it rearranges the numbers within the array A, with at most
a constant number of them stored outside the array at any time.

In the upcoming part, we introduce three more sorting algorithms (assuming n numbers need to be sorted):
e Merge Sort: not in place, but runtime ©(nlogn)
e Heapsort: in place, runtime O(nlogn)

e Quicksort: in place, but worst-case runtime ©(n?). However, its expected runtime is ©(nlogn) and in
practice it outperforms heapsort

The latter algorithms (incl. insertion sort) are all comparison sorts: they determine the sorted order of an input
array by comparing elements.

We then continue with proving a lower bound of 2(nlogn) on the worst-case running time of any comparison
sort on n inputs, thus showing that heapsort and merge sort are asymptotically optimal comparison sorts.

This lower bound can be improved if one adds additional requirements on the input data and thus, if one can
gather information about the sorted order of the input by means other than comparing elements. As an example,
we consider

e Counting Sort: not in place, runtime ©(n + k) in case the numbers to be sorted
are in {1,...,k} = O(n) if k= O(n).

44



Some of these algorithm use a classical divide-and-conquer approach that is based on the following three steps:

Divide the problem into a number of (non-overlapping) subproblems that are smaller instances of the same
problem.

Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just
solve the subproblems in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original problem.

2.2 Merge-Sort

Merge sort is a classical example of divide-and-conquer approaches. The divide-and-conquer paradigm involves
three steps at each level of the recursion:

Main Idea:
Divide the problem into a number of (non-overlapping) subproblems
| 5 | 2 I'-l | b | A | that are smaller instances of the same problem.
merge sort: Divide the n-element sequence to be sorted into two
| 5‘| L | Y | | A | 1 | subsequences of approx. n/2 elements each
/ \‘ /N Conquer the subproblems by solving them recursively. If the subprob-
El lem sizes are small enough, however, just solve the subproblems in
/ \ a straightforward manner.
merge sort: Sort the two subsequences recursively using merge sort
MERLE /1 | % .
A/ Combine the solutions to the subproblems into the solution for the
original problem.
\. merge sort: Merge the two sorted subsequences to produce the
)_ sorted answer
The key operation of the merge sort algorithm is the merging of two
‘ 1 | L| 4 I 5" 0 | sorted sequences in the "combine" step.
RED > g0 ried

The key idea of the "merging-operation" is the merging of two sorted sequences which is done by calling an
auxiliary procedure

MERGE(A, p, q,T)

where A is an array and p, ¢, r integers such that p < ¢ < r.

The procedure assumes that the subarrays A[p..q] and A[g + 1..r] are sorted and merges them to form a single
sorted subarray that replaces the current subarray Ap..r]

Exmpl: A[3..4] = (22, 44) and A[5..7] = (11, 22, 77)

take smallest (first elements) of A[3..4] and A[5..8] and put the smaller one to list and repeat with next smallest
elements:

1,2,2.,4,7

Each comparison: (1) time

45



Thus, merging takes ©(r — p + 1) time since we have in total » — p + 1 comparisons.

MERGE(A, p, q,7) 1st entry of array M is M[1]
lni=q—p+1 length of A[p..q]
2 ngi=r—gq length of Afg + 1..7]
3 Init new arrays L[1..n; + 1] and R[1..ng + 1]
4 FOR (i =1 to ny) DO L[i] == Alp +1i — 1] "copy" A[p..q] to L[1..n4]
5 FOR (j = 1 to na) DO R[j] == Alg + j] "copy" Alg+ 1..r] to R[1..ns]
6 L[ni + 1] :== oo and R[ng + 1] := oo //to avoid: "array index out of bounds"

in L9, 12 and to further increment ¢, resp, j when L, resp., R has been copied
7Ti=1landj =1, k=p

8 WHILE (k <r) DO "merge" elements, while runs from k£ = p..r
9 IF(L[i] < R[j]) THEN

10 Alk] == L[]

11 1=1+1

12 ELSE

13 A[k] = R][j]

14 j=j+1

15 k=k+1

Lemma. MERGE(A, p,q,r) correctly merges the sorted arrays Alp..q] and Alg+ 1..r] into the sorted array Alp..r]
in O(r—p+1) time.

Show correctness: MERGE(A,p,q,r) correctly merges the sorted arrays A[p..q] and Alg+ 1..r] into the sorted
array Alp..r]

Line 1+2: computes the length ny of A[p..q] and ns of A[g+ 1..r].
Line 3-5: Copy " A[p..q] to L[1..n1] and Alg + 1..r] to R[1..ns]
note that L and R are sorted

Loop-invariant: At the start of each iteration of the while-loop (L 8-14), it holds
/1] Alp..k — 1] contains the k — p smallest elements of L[1..n;] and R[1..ns] in sorted order and

[I] Lli], R[j] are the smallest elements of their arrays that have not been copied back into A.

(et y—
P q T
ACp-al , :‘:—qﬁ 4.7
LLN
vepltow ALk) b b o RL;)
p - T
‘n )
ot |
Sotéed —_l K
.. k-4
I Alp .-k THEN A [P' k-1,k] &ocka‘

/1] & [11] hold when initializing first run of while-loop:

46



k = p (just k initialized in 1.7, no run of while-loop so-far) = Alp..p — 1] "empty" and thus has 0 = k —p
elements = [I] holds

Since i =1, j = 1 and A[p..k — 1] empty so-far and since L, R are sorted = [II] holds

[I] & [1I] are maintained when running the while-loop:

Two Cases: L[i] < R[j] or L[i] > R[j]. Assume that L[i] < R[j] in L9

"By induction": L[i] is the smallest element not yet copied back into A (/I] holds) and in L10 L[é] is copied
back to A (A[k] :== LJ[i])

This with L[i] < R[j] and the fact that, by [I], A[p..k — 1] contains the k — p smallest elements of L[1..n1] and
RJ[1..nz] implies that

Alp..k] contains now the k — p + 1 smallest elements of L[1..nq] and R[1..ns]

Incrementing & (in L15) and ¢ (in L11) restablishes the loop invariant for the next iteration.

If instead L[i] > R][j] then L13-14 perform the appropriate action to maintain the loop invariant.

Since [I] & [II] hold in each step, we have at termination of while-loop:
After termination, we have k =r + 1

By the loop-invariant, A[p..k — 1] = Alp..r] contains the k¥ — p = r — p + 1 smallest elements of L[1..n;] and
RJ[1..nz] in sorted order

Since L[1..n1] and R[1..n2] have together ny 4+ ny =1 — p + 1 elements
= Alp..k — 1] = Alp..r] contains the » — p + 1 smallest elements and thus ALL elements of L[1..nq] and
RJ[1..n2] in sorted order.

Since L[1..n4] and R[1..ng] contain all elements of Alp..r] = A[p..r] is now sorted.
—> MERGE(A4, p, q,r) correctly merges the sorted arrays A[p..q] and A[g + 1..r] into the sorted array A[p..r]

Show Runtime: Let N = n; + no. It suffices to use IV and this is, in particular, helpful when analyzing
merge-sort

L1.2,6.7.9-15: each ©(1)

L3-5: O(n1) + B(n2) = O(ny +n2) = O(N).

While-loop in L8 runs r —p = (ng +¢q) — (—n1 +¢—1) = ny + no + 1 = O(N) times (for latter equation see
L1.,2)

Since all tasks within this while-loop take constant time we have runtime ©(N) for L8-14.

= overall runtime O(N).

In summary, we have shown: MERGE(A, p, ¢, 7) correctly merges the sorted arrays A[p..q] and A[g+ 1..r] into the

47



sorted array A[p..r] in ©(N) time with N being the sum of the length of Alg + 1..r] and Ap..r].

We can now use the MERGE procedure as
a subroutine in the merge sort algorithm
MERGE_SORT(A, p, 7).

2 Cases:

p > r: Then Ap..r] has 0 or 1 elements and is
thus sorted

p <1 : Then Alp..r] has N > 2 elements.

In this case, we compute an index ¢ that
subdivides A[p..r] into two arrays:
Alp..q] of size [N/2] and A[g + 1..r] of
size | N/2]

MERGE_SORT(A, p,r)
1 IF(p < r) THEN

2 q=p+r)/2]

3 MERGE_SORT(4,p,q)
4 MERGE_SORT(A,q + 1,7)
5 MERGE(A, p, q,1)
Start algorithm by calling

MERGE_SORT(A, 1, A.length)

[2] denotes the least integer greater than or
equal to x
|z| denotes the greatest integer less than or
equal to z.

P |
MERGE _SoRT (A :3)

512

L{

per ™ 1=L4_;:3J=)..

/

St

2

?f

MERGE _SoRT (A1 12)
P‘r ad 7 -

/

s

|
\
"

b\

1t €

MERGE _SorT (A 11:4) Mskae_sawr(k.z.?-)
qer

\ / Ms&&e(A,E.‘L‘:)

a(LY"

L

5

\ MERGE (A, 4,213 )

Theorem. MERGE_SORT(A, 1, A.length) correctly sorts the array A in ©(nlogy(n)) time.

Correctness: by previous arguments.

Runtime:

_ol
T(n) = 2T(n/2) + O(n'), ie, a=b=2d =122 O(nlog,n)
We can achieve runtime by using the Master theorem:
If T(n) = aT(n/b) + O(n?) with constants a > 1 and b > 1, then

T(n) =

O(n?)
O(ntlogy n)
@(nIOgb(a))

48

if a < b
if a = b
if @ > b?

g+l T
MERGE _SorT (A,33)
par




[Y3
MERGE SORT R o
V1.2, CC by-nc-sa 4.0

T akate Wl {} £a
g | U mn
2 5%

4 7y

2.3 Heaps and Heap-Sort

We introduce another sorting algorithm: Heapsort.
Like merge sort, but unlike insertion sort, heapsort’s running time is in O(nlogn).

Like insertion sort, but unlike merge sort, heapsort sorts in place: only a constant number of array elements
are stored outside the input array at any time.

Thus, heapsort combines the better attributes of the two sorting algorithms we have already discussed.
Before starting we need some further basic introduction into some new terms: Graphs, Tree & Co [next slides]
To recall:

A graph G = (V, E) is a tupel consisting of a vertex set V' := V(@) and an edge set E(G) := E that is a subset
of the 2-elementary subsets of V.

Theorem. The following statements are equivalent for every graph G = (V, E) (exercise):
1. G is a tree (per def: G is connected and acyclic).
2. Any two vertices in G are connected by a unique simple path.
3. G is connected, and |E| = |V|— 1.
4. G is acyclic, and |E| = |V| — 1.
[for all definitions examples are given on the next pages!|

A tree T'= (V, E) is rooted if there is a distinguished vertex p € V, called the root of T

For a rooted tree we can define a partial order <7 on V such x <7 y if y lies on the unique path from the root
p to x.

T'(z) denotes the subtree of T  rooted at x, i.e., the subgraph consisting of all vertices v € V' that satisfy v <7 x
and all edges between them.

If x 27 y and {z,y} € E, then z is child of y and y a parent of «.

49



A vertex in T without any children is a leaf. A vertex that has child is an internal or inner vertex.

Given a tree T = (V, E) with root p we use the following notation:
e depth(z) is the length of the (unique) path from p to z € V
e Vertices are at the same level if they have the same depth
e height h(z) of x € V is the length of a longest simple path from = to a leaf ¢ with ¢ < x

e height of 7" = h(T") is the height of the root p

A rooted tree is ordered if for every vertex v its children are ordered.

A binary tree is an ordered, rooted tree for which each vertex v has at most two children and, if v has only
child, then there is a clear distinction as whether this child is right or left child.

A binary tree is fully binary if each vertex is a leaf or has two children.

A binary tree is complete if all leaves have the same depth h and all inner (=non-leaf) vertices have two children.

A binary tree is nearly-complete if all vertices at depth < A(T') — 2 have to children and all leaves have depth
R(T) or h(T) — 1 and are "filled-up" from left to right, i.e., for all vertices w at depth A(T) — 1 it holds that if
w has two children then all vertices at depth h(T") — 1 that are left of w have two children; if w is a leaf, then
all vertices at depth h(T") — 1 that are right from w are leaves; there is at most one vertex w at depth h(T") —1
that has only child (in which case, this child must be a left child of w).

50



Rasccs: ¢ Hen  (pactd)

émﬂ\/bu\

Tt a= (WE) i

1 4 < l
2 E 2 E
6

3
(CDIAMDLLOI)

V{42,245 6]
E = {yzs, (234, 5274 {253
f35,03, (353, 15,693

pek P (4,2,4,2,0,6 )  panch

145 of lagth
L uot 5,\,‘,‘/1,&,] 5

Simple puth  eg P= (1,2,5)  Gught 2 (# cdyes)

cgu&

P=(2,2:%,2)

6 uot counechd D 1 c
chrj;a/{‘«mt I>‘ I;’

- R

coata cycéb_j
<

SN
£ voet UL?VL\?JJ-/?
1 2 d/vaw o™ +oq:?

& g
//s
15 6./ \

qo a4

10 14
7 /Zﬂokrﬁmf 0% 3 ) S = el lel :9;1[ 1
Aeoves ,&,{é/&&%ﬁd

2 £ 2 o erbLf'm?(ﬁ

4&7’&%9&1«»«—

2] 00/64
456 /fo\o

7o aq

P

dﬂhwfmj /iw(‘b'u wdo  on a&:[o’\’(w‘) »{‘Vi)

¢ apl o S bbb
N L e 9/2.
2 ! i e d/&wz'u.;
& hoo 0wty omc

el td Mhmd/}
g e Apr oLl

3 ?AMQO'L‘GLMU
N SR =

70 a4

b—ﬁmw%

‘F"‘/"‘j = ln\m-_r%
(M ot W'M(‘Mé




Lemma. Let T be a binary tree with L leaves. The number of vertices in T having 2 children is L — 1.

Proof.
By induction along |V(T')|. Let B be the number of vertices in T having 2 children.

Base case: n =1 = T = ({v},0) = “single_vertex_ graph” and thus L=1and B=0 = B=L-1=0
is correct.

Assume the statement is true for all trees on n > 1 vertices.
Let T be a tree with |V(T')| = n + 1 vertices and L leaves. [ It holds that L > 1 (ezercise!) |

Let z be a leaf and consider the tree T — 2 from which 2 and the unique edge {w,x} containing = has been
removed.

Denote with L’ the number of leaves in T' — z and with B’ the number of vertices in T — x having 2 children.
Since T' — x has n vertices we can apply the Ind-Hyp. on T — z.
There are two cases: In T', the parent w of = has either (a) two or (b) one children.
Case (a): In T — x, vertex w has still one child and is, therefore, not a leaf. Hence, L' = L — 1.
By Ind-Hyp: B'=L'—1=L - 2.
In T we have now exactly one vertex more than in 7" — x that has two children, namely w.
Thus, B=B'+1=L-1
Case (b): In T' — z, vertex w is now a leaf. Hence, L' = L. Moreover, observe that B = B’
By Ind-Hyp: B'=L'—1=L — 1. Since B = B’, we have thus B=L — 1.

Lemma. A complete binary tree T = (V, E) has height h(T) =log,(|V]+ 1) — 1 € O(log,(|V])).

Proof. Let L be the number of leaves in T, h := h(T) its height and n = |V].
"Easy to verify by induction:"

h

N /0\
m;ﬁm o 0 /\1 2 m Qg
/0\ AR - A
L L b4 lL\

# leavn L 1
L =2"
L=2" < h=log,y(L).
By the previous lemma, we have B = L — 1 with B being the number of vertices with 2 children.

Since T is a complete binary tree its vertex set can be partitioned into leaves and vertices with two children,
ie.,
n+1
2

n=B+L=L—-1+L=2L—-1<<= L=

= h =logy(%Ft) =logy(n+ 1) —logy(2) =logy(n + 1) — 1

Lemma. A nearly-complete binary tree T = (V, E) has height h(T) = |logy(|V|)] € O(logy(|V])).

Proof.
keiah:t e o 2° gluim
—_— ,14 velien
__ Jz vedcen

/:x S
A - j\ — J_“" vl aa
0 —» k& th"A".a"

52



= V| <L 2 =21
If only one leaf at depth h exists, then |V| =1+ Y"1 21 =1 4 (2" — 1) = 2",

Since at least one leaf at depths h must exist, we obtain
2h < |V| < 2h+1 _1< 2h+1

The latter is, if and only if,
h <logy(|V]) <h+1

Since h is an integer, h = |log,(|V])] € O(logy(|V])).
O

Heapsort uses a data structure called (binary) heap which is an array A with a particular structure that can
be viewed as a nearly complete binary tree:

Number within the circle at each
node in the tree is the value stored
at that node. The number above
1 2 3 4 5 6 7 8 9 10 a node is the corresponding index
in the array. Above and below the
array are lines showing parent-
child relationships; parents are al-
ways to the left of their children.

e
[16]14]10]8 793 ]2]4] 1]
—_— 7

(b)

e 1st entry of A (i.e., A[1]) corresponds to value of root 1,

Parent of 7 is [¢/2] and children of ¢ are 27 (left) and 2i + 1 (right)

A.length = length of array

A.heap size = number of elements in heap that are stored in A

That is, although A[l..A.length] may contain numbers, only the elements in A[l..A.heap size], where
0 < A.heap _size < A.length, are valid elements of the heap

Lemma. If A is a heap with n = A.heap _size, then the leaves in the tree representation have indices i € I =

{In/2] +1,...,n}.
[proof board]

53



HE4Ps R HEAC-SoRT
efhrs < TEACTTIR:

l?/l/mwuo\: ,é&w% h a /K/au/o ,/ Lk w
%/C @i%'w Q
ZZ‘/-F i}---}n

prod s L= {13040, o]

8;7 conhoiclion 47 ne .L_ & [‘ nou _&5‘_/
=5 aF hea ok Leat one chilol kel 2, Ll

sme W2 5] +1
we Lm-v(,,}h 32L‘%Jf2>“/,,‘<_. O&.//ﬂ'( oué—ru(

s/@_),&é
) ¥ ieT - i’l}_‘;o\zu,(,

codd dtwe be Lo 7,4,_7:2

b & be o Z@a/

Puw T hon wo 1t =D 2«5,/2";"“7-
cre 0ot pa/l:
o hree

A M'LM{U 0({ Lu.n,g

= e, 1a+l >h
= .- u _
T2 = 4eT

Q



There are two kinds of binary heaps: max-heaps and min-heaps; specified by a "heap property" that must be
satisfied by the values stored at each vertex.

Heap property
e max-heap: for every node i other than the root it holds that A[parent(i)] > Ali]
e min-heap: for every node ¢ other than the root it holds that A[parent ()] < A[i]
For heapsort we use max-heaps (see Example in figure).

max-heap: for every node i other than the root it holds that A[parent(i)] > Ali]

Assume we have a binary heap (=nearly complete binary tree) and an index i such that the binary trees rooted
at

left(i) = 2i and right(i) = 2i + 1 are max-heaps, but that A[i] < A[2i] or A[i] < A[2i + 1]

= { violates the max-heap property.

Max-Heapify(A, 1)

l'=2iandr=2i+1
largest =1
IF (I < A.heap_size and A[l] > Allargest]) THEN largest =1
IF (r < A.heap_size and Alr] > A[largest]) THEN largest :=r
IF (largest # i) THEN

exchange A[i] with A[largest]

Max-Heapify(A, largest)

N O U W N

55



Here, A.heap size =10
call Max-Heapify(4,2)

= largest =4
4 A[5) =7 # A[4].
5-7 largest # 2
exchange A[2] with A[4]
call Max-Heapify(4,4)

Here, A.heap size =10
call Max-Heapify(4,4)

11:=8r:=9,

2 largest =4

3 A[8]=2% A4 =4
4 A9 =8> A[4] = 4.

= largest =9
5-7 largest # 4

exchange A[4] with A[9]

call Max-Heapify(A4,9)

Here, A.heap size =10
call Max-Heapify(4,9)

1 1:=18,r =19,

2 largest =9

3 1L Aheap size =10
5-7

r £ A.heap _size =10
largest =1 =9
Stop.

Max-Heapify lets the value at A[i] "float down" in the max-heap so that the subtree rooted at index i obeys
the max-heap property.

This is achieved by exchanging A[i] recursively with the largest element of the children

Since we always exchanged with largest child-value, the final tree T'(7) is a max-heap.

Runtime?

Comparing values and exchange per call: ©(1)

# of calls: O(log(n)) as h(T') € O(log(n)) or via master theorem [ezercise - see Cormen Sec 6.2/

= Total runtime is O(log(n))
Every array A can naturally be viewed as a heap (however, A might not be a max-heap)

Build-Max-Heap(A)

1 A.heap size = A.length
2 FOR (i = | A.length/2| TO 1 DO
3 Max-Heapify(A4, 7)

56



A: 4419 101416596 37 24 89| 710

57



A:[ 16‘114‘210‘384‘75‘96‘37‘28‘49‘110]

To transform A into a max-heap, we may simply apply Max-Heapify bottom-up to each ¢ violating the max-heap
property.

Note, by the previous lemma, for each leaf i, T'(7) is a single vertex and thus, already a max-heap.

Theorem. Build-Max-Heap(A) correctly transforms A into a maz-heap in O(A.heap_size) time

[proof correctness on board, proof runtime omitted - rather lengthy (ideas in Cormen Sec 6.3) - full proof 5
pages in my notes/

58



Tasromi  Build- marwend (K comectly Mmsfims
p’ anto o VA= - o A O(A }\215
r bep
PRooF -
CD/VT-W“"-CS

'(-‘f wnvanaat "

At bt 1 tod Stookon of 4~ FoR toop (thw 2_3) ik &
cad noole a+d o4, on 8 Fa sl pﬁ a mﬁ&_w
(= Tlit2),.~ Tla) ot mon dusps )

El\mr +o (—YSJ‘ rew sd roﬂ—[oa‘:) (q_'_z (_D—;-_J )
Lol velux  itde. v iS a dad 2 Lot
ab avc)

2 ead Tlist)- Tle) . 4 gl et bee
4 s o W"‘"-“““f)

T FOIA mvf , i voler 4 :

clutldin of = dove wlue A diehe | .. n)
(WUML—A«J’!'D’\) !

= T2 £ TRied) ore wos bugps,

Thit oj;-oaoob] dw covckboe  glet
troirn Mt MAX- HEAP(FY(AT)
Ao form A Ao wmar —ducp il voot T

= Tl=) 51 wax - l/u_o-/_)

Wolh, mAxX weapiFy (A} protva M
P’”ﬂ*/b? o} TCi4l) ..T() 6ty W}L—[AUT!.S

As ttn Ano ldc “éotf alt ’l—:) Loapffjm‘osw‘—
AC ontamd G eoxd  atoclow o»p
For - bvw(.) .

F)’%o\a.j M ,4.{‘5 \IUWIMEAPII?U rowm 9’( ol —vaP
w 4= 1 -~ T A > a wo.g-bwt!ﬁ.

=Y Bulp. max_ugab (4 AR (;o:/n:ot.

RV‘/\J'T/ME Egm/u'”-(_ﬂe an (LC/L’WLI

2w ol ol max_hepaPiFy . p [ Leg(e)
O(u) gud calls.
—~ O/wﬂa‘_f{u)).

#d wppes bowwol <5 cosvech

bl  wlk o0y unfo 1‘0/‘7’&0/{{7 pllfl'{

A we  heve

BETTER:

clerw:  Moveorws > /‘uf-wuﬂo M) Fre et | @
af most fjh? wooler  wills A&i/»z‘:,h.

P‘ogco{ doriimn s Ay = # velin f buigtit .
Notc Het /MA‘?L/- h o‘[ ref ek v
= t o ce v v Ao wne
Loy iz 40 M{{

XA v
E}UoTab.rUJ]

M;"‘/i’

h= 0O = /V,.=J4/&m/un‘n /L‘MTD.

L XL\»»—: Ko—é ./1/0 =] rl_'%_“1 = I’-fY

RASE CALE.

"

gﬂAU— T terl w»»r\utﬁ
- a»l[ WApevin eve ok OLL(MT(A H

65 H-L
T T
G i

(J./’l’ ﬂ:kl}&um % g!,o()e(/l H

R /T - Mo Lecws, =T
T A complebe bresy Mer L (uethy| =241

K-t

2 ) = - =27 - | = odd nuwos

= }_F n odsl Huu A eotun
w evin Hue % odd.

(7 el bTren”)

\ We uwwmé @(A\Mmb/m/t Llvere e tou Ut

nw Ay ocdd vg h Al ertrs.

_’A’ﬁi:i, = 2 0t = ad lueed vetex
' hea 2 cdrlebeter
= # anhel nodlu = g lecwres — 1
C?WM ra
oreph, Artca ke ca”)
D b= el welln  # Lieurs
= R #ALlavn — 1

N totm: = % odd = uet ol tnbed wools
foue L ekt (eltan

= Lxake ot dots wed benrt
a %%7 ['/7’

- )

o odd odd shing ~> pe T

e heuve n+tl (obld) nl'an
ie) ame @) opou,
= # bova +1L = [’“%"777 [V;(

/

e @)

L ecomm
nw i\ ey,



h= 1204 tocweds b

ASsow-l— o A~re -{ﬂ-"

L+ T\ be He e oblaind {«wﬂ” by
MOM‘M»?/ Q.M bta.um 0

T hoo w veres (=
'7—l }LM //b'= M/—A/a Y )

et
T (
/ T
AN S

Lavrs reomd,

! . - -
= M, = W}q= # velcn oh baghtt h-l

PN v

'7? Sppnr =726 7

lu basp wils ) Har osT
af most [‘nz_%ﬂ wooler iU M%# b .

Au,o-—?:)t =h

dbowh M f s hen Leol

T hiop of tepsin=n o Lt Ly ()

S [ a1 ety O phth Lptine 5y bree

T rrme I‘-ﬁ?t_l\m&( b MA—X_HIEA-P”:V whia
codlid will o wsde of M‘i/ﬂ'f' hs O(4)

= (hn hne B(AlbD-MA'X- HEA'P com be
boumsled fya/wx eore b;

[5@0 Lt
é_{grf’m t(;vﬁ\\ é‘/\:o(é;’“ch>

Olw)

P—:a&é ’L&NT[W‘E I




Aim: Order elements of a given array A = A[l..n] such that A[1] < A[2] <--- < An].
Heapsort Alg. Idea:

1 Transform A to a max-heap

2 By definition , if A is a max-heap, then A[1] is the largest element in A (it is stored at the root)

3 Exchange A[l] with A[n], now the largest element of A[l..n] is in the correct position n

4 Goto Step 1 with A[l..n —1] “playing the role” of A and repeat until all elements in A have been processed

We can realize the latter idea as follows:

Heapsort(A)

1 Build-Max-Heap(A)

2 FOR 4 = A.length TO 2 DO

3 Exchange A[l] with A[]

I A.heap size = A.heap size — 1
5  Max-Heapify(A4, 1)

61



A=[H 1,32 %, 8 10 ,83]  A=[4M28 F,9,3 2 4,1]

NAX. HEAP: @
OO
oJoJole
(1) (2) O OO

A=['] "l'1.10l3'?-’ﬂ|3 (J' ll'[l%] A=['1 l']ull"olg(q-lﬂls l)' "-['ﬂ,]

NAX. HEAP: @ NAXAEAP: 0
& W & W
HOO G oJolofo
5 TOO 5 OO

A= [M 8 004 3,9 3 2 ,1,1%] A=[1 8,04 3,9, 3, 2 14,4%]

NAX. HEAP: NAX. HEAP:
(1) (1)
(8) () (8 ()
OXOJORO D) OO® ®
(5) OX0 (6) O

A= 1,8, 04, 3,9, 3,2 191] A= [10 8,8 49, 3,1, 3 2 191]

AXHEAP: o MAX. HEAP: O
(8) () OO
(D) O ® OXOIORO
(7) O (8) ©

A= [1,8,9,4, 3,1, 3 1% 191] A=[9,83,4,3,1,2 10 111]
nA EAP: NAX.HEAP:
M Q) ®
OO OO
OJOIORO OJOIOKCO
(9) (10)

A=[2,8,3,4,3,4,39 10 14,14%]

RAXAEAP:
(1)
OO o
OXOI0
dun .. ON. .-

(11)



Theorem. Heapsort(A) correctly orders A in O(nlog(n)) time (n = A.length)

Proof: By the latter arguments, Heapsort is correct. Runtime: (n — 1) calls of Max-Heapify each takes
O(log(n)) time. O

2.4 Quick-Sort

Quicksort: in place sorting, but worst-case runtime ©(n?). However, its expected runtime is ©(nlogn) and in
practice it outperforms heapsort.

Quicksort(A, p, r) //A[l]=first entry of A
1 IF (p < r) THEN
2 g =Partition(4,p,r)
3 Quicksort(4, p,¢—1)
4 Quicksort(4, ¢+1,r)

The key to Quicksort is the Partition procedure, which rearranges the subarray A[p..r| in place.
To sort an entire array A, the initial call is

Quicksort(A, 1, A.length)
We call A[p..q — 1] the low side and A[g + 1..r] the high side

Partition(A4, p, r)
1 = A[r] //pivot (other ways to pick a are possible!)
2 i =p—1 //iis highest index of low side
3 FOR j =p TO r — 1 DO
process each element other than pivot

4 IF (A[j] < x) THEN
does this element belong on the low side?
5 i =1+ 1 //index of a new slot in the low side

6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]

pivot goes just to the right of the low side
8 RETURN ¢ + 1

Like merge sort, quicksort applies the divide-and-conquer paradigm. Here is the three-step divide-and-conquer
process for sorting a typical subarray Alp..r|:

Divide the problem into a number of (non-overlapping) subproblems that are smaller instances of the same
problem.

quicksort: partition/rearrange the array A[p..r| into two (possibly empty) subarrays A[p..q — 1] and A[g+
1..r] such that all elements in A[p..q — 1] are less than or equal to the pivot A[g], which is, in turn, less
than or equal to each element A[g + 1..r]. Compute the index ¢ of the pivot as part of this partitioning
procedure.

Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just
solve the subproblems in a straightforward manner.

quicksort: Sort the two subarrays A[p..q — 1] and A[g + 1..r] by recursive calls to quicksort.

63



Combine the solutions to the subproblems into the solution for the original problem.

quicksort: Because the subarrays are already sorted, no work is needed to combine them: the entire array
Alp..r] is now sorted.

Yy
I/ﬁ,.} r o b A[\j], é_L[
|2 81711135 6|4 e

s d E xclhinunge Al
L2ls 7] 3]s 6] Non 0o eff-cch now

pi J r K/A%Jéx.
2-7 1]3]3 6I4 g0 Afj‘zéi[’(
pi Ty N "//Agjex

z-l 356'4

P irye k r ﬁ/gxmmmgcmﬂ[ﬂré AL\K
2 1-3 516l

Al(l =¥
P i J r /—"'7 P il =
A0E | B0 AL £ AN)

Al;j714X

4 ¥
2] 1 fs Cj S FX
p v
2|1 Excliouge -
5. r
ACi«1 vl A
P q=4 and call
211 Quicksort(A,1,3) and
Quicksort(A,4,8) and
Theorem. Quicksort(A, 1, n) correctly sorts the array (in place) in O(n?) time. (n = A.length)

Proof. correctness: easy exercise - see Cormen Sec 7.1.

runtime: Let T'(n) be worst-case runtime for size n input.

q = PARTITION(A, 1,7n) runs in O(n) time.

Then, we consider the subproblems A[p..q — 1] and A[g + 1..r] of total size n — 1.

64



One of them is of size ¢ and the other of size n — 1 — /.
= T(n) = o x| {TW)+T(n—1-4£)}+06(n)

Show by induction T'(n) € O(n?)
Base case n = 1: T'(n) = T(0) + T(0) + ©(1) = ©(1) = O(1?), since the recursive call on array of size 0 just
returns.
Assume, the statement is true for all instance of size < n. Consider an instance of size n
By Ind-hyp., T'(i) € O(i?) and thus, T(i) < c-4? for all i < n and large enough constants ¢
= T(n) < o x| {e-P+c-(n—1-10)*}+0(n)
=c- max {’+4(n—1-10)%}+0(n)

0</<n—1

For which ¢ is maximum in f(¢) = ¢%> + (n — 1 — ¢)? achieved? ~ Answer: For £ = 0 and ¢/ = n — 1 (take first
derivative < (Z) =0)

Either ch01ce of £ implies that T(n) < c-(n—1)24+¢-0+0(n) = c(n? —2n+ 1) + O(n) < én? € O(n?) O

In fact, there are example where worst-case is achieved, i.e., there are instances such that T'(n) € Q(n?) (e.g. if
A is in reversed order (exercise))

These worst-case examples are rare and we can obtained better expected runtime when entries in A are are
pairwise distinct and randomly distributed.

Theorem. If the entries in A are pairwise distinct and randomly distributed (i.e., each of the n! possible
permutations of the entries in A are equiprobable), then the average time of Quicksort(A, 1, n) is in O(nlogn).

Proof. W.lo.g. n = A.length and Afi] € {1,...,n}. Recall that ¢ = PARTITION(A, 1,n) runs in ©(n) time.
By assumption, each k € {1,...,n} is equally likely on some position of A.

= with probability 1 we have A[n] =k and thus, k is a pivot in which case
the problem is subdivided into two smaller problems of size k — 1 and n — k

— T(n) =1 kil(T(k D)+ T(n—k) +6(n)
= %((_T(O) +T(n=1))+(T (11> +T(n—2)) 4+ (T(n—2)+T1))+ (T(n—1)+T(0))) + O(n)
:% z T(k) +©(n)< ,l Z 2T (k) + ¢n  for large enough ¢

Note T(0) = (constant time é on array of size 0: 1 comparison in L1 / constant effort in Partition)
T(n)<eé+1i Z2T()—|—cn< ZQT()+P7)

By induction, we can assume that T(N ) € O(Nlog N) for all N < n (base case n = 1,2 check by yourself)
n—1 n—1

= T(n) <2 ¥ T(k)+cen< 2> (/(klogk))+cn for large enough ¢/
k=1 k=1

n

Note that Z klogk) < [(xlogz)dx (Why? Hint: klogk is monoton increasing).

—

n
Moreover, as you have learned or will learn in Analysis: [(zlogz)dz = %nQ logn — %2 + i < %n2 logn — n
1

65



, =1 ’ ’
Hence, T'(n) < 2¢ 3" (klogk) + cn < 2 (in?logn — %2) +cn = cd'nlogn + (¢ — §)n € O(nlogn) O
k=1

o0
KVICK SORT idea-instructions.com/quick-sort/ m
V12, CC by-nc-sa 4.0

T et 1]
ﬁ% /

-

)
11 11
6 KVICK SORT KVICK SORT

i

Here, the pivot is randomly chosen!

2.5 Lower bound for "comparison sort"

We have now seen a handful of algorithms that can sort n numbers in O(nlogn) time.
Whereas merge sort and heapsort achieve this upper bound in the worst case, quicksort achieves it on average.

Moreover, for each of these algorithms, we can produce a sequence of n input numbers that causes the algorithm
to run in Q(nlogn) time [exercise/

These algorithms share an interesting property: the sorted order they determine is based only on compar-
isons between the input elements. We call such sorting algorithms comparison sorts. Thus, all the sorting

algorithms introduced so far are comparison sorts.

In what follows, we show that any comparison sort must make Q(nlogn) comparisons in the worst case to sort
n elements. Thus, merge sort and heapsort are asymptotically optimal, and no comparison sort exists that is

66



faster by more than a constant factor.
Entres Ar=AGY 1 eie2

DecisionTree for luger biow Sock

(For A.si2e= ED)

For the worst case, we can assume that all elements in
A[l..n] are distinct.

We can view comparison sorts abstractly in terms of
decision trees. A decision tree is a full binary tree
(each node is either a leaf or has both children) that
represents the comparisons between elements that are

i GAD

N
v

I

A

Agiy A AzAah2 AaAsAa  Azha A performed by a particular sorting algorithm operating
ol ® b AIA on an input of a given size.

b8 MmN Because any correct sorting algorithm must be able to

6.8 Ar 1A, produce each permutation of its input, each of the n!

268 permutations on n elements must appear as at least one

of the leaves of the decision tree for a comparison sort
log(n!) =log(1-2-...-n) implies together with log-rules: to be correct.

Since a binary tree of height h has no more than 2"

h>nl > =
log(n!) = Y log(i) < 2", log(n) = nlog(n) € leaves, we have 2" > n! <= h > log(n!) = Q(nlogn)
O(nlog(n)) So, in worst-case at least Q(nlogn) comparisons must
be performed in any comparison sort to sort n elements.
log(n!) = 377 log(i) > 37, 5 log(i) =

= log(n/2) +log(n/2 + 1)+ -+ log(n —
1) + log(n)

> log(n/2) + ... + log(n/2) = n/2 -
log(n/2) € Q(nlog(n))

Comparison sort algorithms must make Q(nlogn) comparisons in the worst case to sort n elements. Thus,
merge sort and heapsort are asymptotically optimal, and no comparison sort exists that is faster by more than
a constant factor.

2.6 Counting-Sort

How to sort an array, if not not by comparing the elements 7?7

Counting sort assumes that each of the n input elements is an integer in the range 0 to k, for some integer k
and runs in O(n + k) time.

Hence, if kK = O(n), the counting sort runs in ©(n) time.

Counting sort first determines, for each input element x, the number of elements less than or equal to x.

It then uses this information to place element x directly into its position in the sorted output array.

Example: A =1[2,6,5,0,1] = 4 elements are less than or equal to © =5
= in sorted array, © = 5 must be placed in position 4, i.e., A[4] = 5 must hold.

We must modify this scheme slightly to handle the situation in which several elements have the same value,
since we do not want them all to end up in the same position.

67



COUNTING-SORT(A, n, k)

1

[\

U W

EN |

let B[1..n] and C0..k] be new arrays
FOR (i = 0 to k) DO Cli] = 0
FOR (5 =1 to n) DO C[A]j]] = C[A[j]] +1 //C[i] now contains the nr of elements equal to i
FOR (i = 1 to k) DO CJi] = C[i] + C[¢ — 1] //C[i] now contains the nr of elements < ¢
FOR (j = n to 1) DO
B[C[A[j]]] = Alj] //Copy A to B, starting from the end of A.
C[A[j]] = C[A[4]] = 1 //to handle duplicate values
RETURN B

Ezxample Board

123 45 6 7 8 123 45 6 78
al2]s5]3]0]2]3]0]3] 01 23 4 s 5 [ s [
001 2 3 4 5 cl2]2]4]7]7]s] 001 2 3 45
c[2]o]2]3]0]1] c[2]2]4]6]7]8]
after Line 3 after Line 4 after Line 5-7 with j=8
1 23 45 6 7 8 12 3 45 6 7 8
3 I 0 I Y 2 N Y 0 Y R ERET Y L2345 6 7 8
01 2 3 45 001 2 3 4 5 BloJo]2]2]3]3]3]s]
cli]2]4]6]7]8] cli]z]4]s]7]s]

after Line 5-7 with j=7 after Line 5-7 with j=6 final sorted array B

Theorem. COUNTING-SORT(A,n, k) correctly sorts the elements of A into B in ©(n + k) time.

Proof: correctness [FEzercise].

In practice, we usually use counting sort when we have k = O(n), in which case the running time is O(n).
Thus, counting sort can beat the lower bound of Q(nlogn) because it is not a comparison sort. In fact, no

runtime:

Line 1 takes O(n + k) time

FOR-loops of line 2 and 4 both take O(k) time
FOR-loops of line 3 and 5-7 both takes ©(n) time
= overall time is ©(k +n)

comparisons between input elements occur anywhere in the code.

There are many further algorithms that can beat this lower when additional information about the data to be
sorted is available. E.g. bucket sorts assumes that the input is drawn from a uniform distribution and has an

average-case running time of O(n).

2.7 Summary

Given: A sequence of integers (a1, as...,a,)

Goal: A re-ordering (a},a)...,al) such that a) <ah <---<a

!
n

We have seen now several sorting algorithms (assuming n numbers need to be sorted):

e Insertion Sort: in place, runtime O(n?)

e Merge Sort: not in place, runtime O(nlogn)

e Heapsort: in place, runtime O(nlogn)

e Quicksort: in place, worst-case runtime ©(n?). However, expected runtime is ©(nlogn) and in practice

it outperforms heapsort

68



The latter algorithms are all comparison sorts: they determine the sorted order of an input array by comparing
elements.

We provided a lower bound of 2(nlogn) on the worst-case running time of any comparison sort on n inputs,
thus showing that heapsort and merge sort are asymptotically optimal comparison sorts.

This lower bound can be improved if one adds additional requirements on the input data and thus, if one
can gather information about the sorted order of the input by means other than comparing elements. As an
example, we considered

e Counting Sort: not in place, runtime ©(n + k) in case the n numbers to be sorted are in {1,...,k}

= runtime O(n) if £k = O(n).

69



Chapter 3

Searching and Search Trees

So-far we considered sorting. What about searching an element?

Searching in arrays means to determine if a given element (key) is in an array and, in the affirmative case,
provide its position.
We focus on the following algorithms:

e Linear Search

e Binary Search

e Jump Search

e Exponential Search
We then focus on a special data structure binary search trees (BST). In particular, we are dealing with two
special types of BSTs:

e AVL trees

e Red-Black trees

3.1 Searching in Arrays

3.1.1 Linear Search

Linear search (often also called sequential search) is a method for finding an element (key) within an array. It
sequentially checks each element of the array until a match is found or the whole array has been searched.

| | ;
| i |
< v B T E Y b M T B Y = v B T E Y
Look for the french fry with length —
| | |
i i |
9 o3 LN b = BN -G = E Y

70



French fry found!

given an array of length n:

e An unsuccessful search requires n key comparisons (all elements must be checked).

e A successful search requires at most n key comparisons in the worst case (the desired element is at the
end of the list).

This implies

Time-complexity of Sequential Search: O(n)

Let’s have a look to the average case.

Let A be an array with n pairwise distinct elements that are randomly distributed along A. Then, the average
number Cy,q of key comparisons in a successful sequential search in A is:

1<, 1Inn+1) n41l
C(I.’U = — = — =
g n;Z n 2 2

WHY? since, with probability % a key x is at position ¢ and to find this key needs then ¢ comparisons.
The necessary key comparisons for all cases (with = at position 7) amount to: 1 +2+--- +n.

Can we do better, e.g., if A is already sorted?

3.1.2 Binary Search

Linear search: checking if = is in A[1..n] works in O(n) time. However, we can do better!

Suppose that A is sorted, then we can apply binary search
[sorting costs O(nlogn) time but needs to be done only once!]:

BinarySearch(A, z, first, last) //find z in sorted A[first..last] initialized with (A, x, 1, n)
1 IF (first > last) THEN RETURN “A does not contain x”
2 mid = | (first + last)/2]
3 IF (A[mid] = x) THEN RETURN “A contains x on position mid”
4 IF (A[mid] > x) THEN BinarySearch(A, z, first, mid — 1)
5 ELSE BinarySearch(A4, x, mid + 1, last)

Example. Find x =3 in A

pos 1

2 8 4 5 6 7
A= [1 2 8 5 7 8 9]

call BinarySearch(A4, z,1,7) = mid=|(1+7)/2] =4
Since A[4] =5 > 3 and A is sorted, z must be contained in A[1..3] (if = exists in A)

Example. Find x =3 in A

71



pos 1 2 8 4 5 6 7

A= [1 2 8 5 7 8 9]

call BinarySearch(4, z, 1,3) = mid=[(1+3)/2] =2

Since A[2] =2 < 3 and A is sorted,  must be contained in A[3..3] (if = exists in A)

Example. Find x =3 in A

pos 1 2

8 4 5 6 7
A= [1 2 3 5 7 8 9]
call BinarySearch(A4, z, 3,3) = mid=[(3+3)/2] =3

Since A[3] = 3 and we found z

Theorem. BinarySearch(A,z,1,n) correctly determines if x exists in sorted A in ©(logy(n))

Proof. correctness-sketch: If x = A[| %] we are done.

Otherwise, if 2 < A[[ §]] it must be contained (if at all) in A[1..| 5] — 1] (Since A is sorted)
Otherwise, if 2 > A[[ %] it must be contained (if at all) in A[[ 5| 4 1,n] (Since A is sorted)

Now recurse (exercise)
runtime: any idea? T(n)=T(%)+ O(1)
Via Mastertheorem: a = 1,b=2,d =0 = a =b? = T(n) € O(n’log,(n)) = O(log,(n))

To give you a sense of just how fast binary search:
Twenty questions is a popular children’s game:
e Player 1 selects a word (e.g. from a printed dictionary)
e Player 2 repeatedly asks true/false questions in an attempt to guess it.
e If the word remains unidentified after 20 questions, the player 1 wins; otherwise, the player 2 takes the

honors.

Is there a winning strategy for player 2
Answer: YES!

e Player 2 opens dictionary in the middle, selects a word (say “move”), and asks whether the unknown word
is before “move” in alphabetical order. Since standard dictionaries contain 50’000 to 200’000 words, we
can be certain that the process will terminate within twenty questions since log2(200'000) = 17.61.

Player 2 always wins!

3.1.3 Jump Search

Pre-condition: (1) Array L sorted (increasing) and (2) keys in L are pairwise distinct
(first element is L[1])

Principle: L is divided into sections of fixed length m. Jump over the sections to determine the section of the
key.

Sections:  1...m, m+1...2m, 2m—+1...3m, and so on.

72



Simple Jump Search:
e Jump to positions ¢ -m + 1 (for i = 1,2,...) one after another.
e Assoon as x < L[i - m + 1], z can only be in the -th section (i — 1) -m+1...7-m;
e In this i-th section, we apply linear search for finding z.

Example:

L=[1357 11 13 16 17 23 33 34 35]

Find key x = 17 in L und chose here jump width m = 3.

L=[1357 11 13 16 17 23 33 34 35]

Subdivision of L into blocks of length m = 3.

L=[1 3 5 ; 11 13 16 17 23 33 34 35]

t=1,m=3 and jump toi-m+1=4

Since L[4] =7 < 17, we take the next i := 2.

L=[135 7 11 13(16)17 23 33 34 35]

]

i=2,m=3and jumptoi-m+1=7
Since L[7] = 16 < 17, we take next i := 3.

L=[135711 13 16 17 23@34 35 ]

]

i=3, m=3 and jump toi-m+1=10
Since L[10] = 33 > 17, it follows that 17 must be in section L[2m + 1..3m] (if 17 is in L at all).

73



L=[1357 11 13(16)17 23 33 34 35]

]

Start linear search in section [16, 17, 23].

Since 16 < 17 (already compared), go to next element in this section

L=[1357 1113 16(17)23 33 34 35]

]

We find 17 at position 8 in L, return 8 and stop searching.

Assuming that all keys in L are randomly distributed and n is length of L and jumps and comparison can be
done in constant time:

Average Search Costg’: /
Cavg(n) € O(— +m)

m

e In total, at most = jumps are possible

m

e and we need to check one of the blocks of size m to check if x exists via linear search

Question: Is there an optimal jump-width?
Idea: One could attempt to optimize the average key comparisons, i.e., finding the m that minimizes ;- + m.

Sketch: Take the derivative of Cqyg(n), set it to 0, and solve the equation for m:

d n 9

%C’aw(n)zl—W:0 = m°=n = m=+n

= Optimal jump length m = |/n]; then complexity is in O(y/n) |better than linear search!]

®For more information, see Shneiderman, B. (1978) "Jump searching: a fast sequential search technique"
Communications of the ACM, 21(10), pp.831-834.

Jump seach is better than linear search but worse than binary search.
Why not use binary search instead?

If your data is too large for main memory, with jump search, only parts (blocks) need to be loaded into main
memory!

3.1.4 Exponential Search

Question: How can we search when the length of a search range is initially unknown?

Binary search and or jump search with optimal jump-width assume that one knows the length of the range
to be searched before starting the search. However, there may be cases where the search range is finite but
“practically” unlimited. In such a case, it is reasonable to first determine an upper limit for the range to be
searched, within which an element with key k& must lie if such an element exists at all.

Idea: Determine, in exponentially growing steps, a range in which the search key must lie.

74



Principle of Exponential Search for = in increasingly sorted L (first entry L[1]):
1. Test L[1], L[2], L[4], L[8], ..., L[27], ...
2. At the smallest j such that # < L[27]: Either z is in L[(2/~! 4+ 1)...27] or z is not in L.
3. Search within [L[2/=1 + 1], ..., L[27]] using any search method.

Exponential Search(L (sorted increasingly), x)
1 IF (z = L[1]) RETURN 1

t=2

WHILE (z > L[i]) DO //Determine boundaries of search space
1:=2-1

FOR (j =4/2+1,4/2+2,...,%) DO
IF (L[j] = =) THEN RETURN j

RETURN —1//x not in L

Y T W N

®)

-~

Missing detail: Must be careful here, to avoid that program crashes when i in while-loop is out of range of L.

In the pseudo-code, we simply assume that it terminates when L[i]| = NIL, i.e., i is out of range of L.

Example.

L=[3 57 11 13 17 19 23]

Find x =13 in L.

L=(3) 7 11 13 17 19 23]

i=1
Since L[1] = 3 < 13, we have ¢ := 2 -1 = 2. Check now L[2].

L=1[3(57 11 13 17 19 23]

T

Note: In red part, we cannot find = since L is sorted.

Since L[2] =5 < 13, we have ¢ := 2 -2 = 4. Check now L[4].

i=2

75



L=[[3 5 (11)13 17 19 23]

T

Note: In red part, we cannot find x since L is sorted.

Since L[4] = 11 < 13, we have i := 2 -4 = 8. Check now L][8].

i=4.

d

L=[357 11 I3 17 19 (23)

i=8.
Note: In red part, we cannot find x since L is sorted.

Since L[8] = 23 > 13, it follows that 13 is in L[5..8] (if « in L at all).

el

L=[3 57 11(13)17 19 23

Check existence of z = 13 via linear search in L[5..8]:
In the first step of the linear search we found 13. Return position of 13.

Costs.

Theorem. If L contains only pairwise-disinct keys from N, then exponential search runs in O(log, x) time

e Note, |log, 2| + 1 = number of bits in binary representation of the key x [z not size of array!|
Hence, if < 2 for some constant k, then log, 2 < log,2* = k and thus, exponential search runs in
constant time

Proof-sketch (runtime in O(log, x)).
Since L contains only pairwise-distinct keys from N
= Key values z grow at least as fast as the element indices, i.e., L[k] > k Vk.

= 1 is doubled at most log, z times because i > log,(x) implies

L[27] > 2% > 2182(*) = 1 . (gives stop criterion!)

= Determine the correct interval: in < j < log,  comparisons with i = 27.
Thus, j € O(log, z)

Length of this interval: 29 — 2971 =2971(2 — 1) = 29-1 where j € O(log, ).
This means that the length of the interval being searched is in O(2'°82(*)=1),

76



Search within this intervall (e.g., binary search): O(logy(2'82(*)=1)) = O(log,(z) — 1) = O(log, ).

= Overall effort O(log, z) O

While searching in arrays is reasonable fast once they are sorted, modication of arrays (removing or adding
elements) is a somewhat teadious task.

To support dynamic-set operations (including search, find minimum, find maximum, but also insert or delete)
a tree data structure is more suitable.

3.2 Search Trees

3.2.1 Binary Search Trees

A binary tree is a rooted tree for which each vertex has at most two children.

ToP | LEFT| Key |Ribd]
ok P AR |
s/ y :
Vieet| key [Reord e R é'w
/| Ak \ 3
/fof’/ \\ el ve| €| N
LEFT | Key |R bt LEFT | Key |RtobHT LEFT| Key |RtowT]
I n 0 vie o e | & \ P/ S, (7% 8 N e

In a tree data structure, each vertex x is an object with

e z.key some value to be stored (maybe also some extra satellite data)

e z.left, x.right, x.top are pointers refering to the address of the left child, right child and parent of z,
respectively

If a child or the parent is missing, the appropriate attribute contains the value NIL .

A Binary Search Trees (BST) is a binary tree in which the keys are always stored in such a way that they
satisfy the binary-search-tree property:

e Let x be a node in a binary search tree.

e If y is a node in the left subtree of x, then y.key < z.key.
If y is a node in the right subtree of z, then y.key > x.key.

T /Q\. TLE
o &
SN AR

7

S



Which of them are search-trees?
Answer: Only Th and T3 (T»: 10/11, Ty: 8/9)
Binary Search Trees are not necessarily uniquely determined:

Preorder:
1. wisit current vertex
2. recursively traverse left subtree

3. recursively traverse right subtree

Postorder:
1. recursively traverse left subtree
2. recursively traverse right subtree

3. wvisit current vertex

Inorder:
1. recursively traverse left subtree

2. wvisit current vertex

3. recursively traverse right subtree .
numbers in squares =

order in which nodes are visited
INORDER-TREE-WALK(z)
1 IF (x # NIL) THEN
2 INORDER-TREE-WALK(x.le ft)
3 PRINT z.key
4 INORDER-TREE-WALK(x.right)

Inorder:
1. recursively traverse left subtree

2. visit current vertex

3. recursively traverse right subtree

Ezecute INORDER-TREE-WALK(x) in:

78



PRINT x.key: 2,5,5,6,7,8
Inorder traversal allows us to print all elements in a search tree in sorted order.

Ezecute INORDER-TREE-WALK(x) in

QL

e

PRINT x.key: 2,5,5,6,7,8

Inorder traversal allows us to print all elements in a search tree in sorted order.

Theorem. If x is a root of an n-vertex binary search tree, then INORDER-TREE-WALK(x) prints all elements in
sorted order in ©(n) time

Proof. correct: due to binary-search-tree property:
y.key < x.key if y in left subtree and z.key < y.key if y in right subtree

runtime: INORDER-TREE-WALK(z) visits all n nodes of the subtree = T'(n) = Q(n)
left subtree k£ > 0 nodes and right subtree has n — k — 1 nodes
= T(n)=T(k)+T(n—k—1)+d where T(0) = ¢ (¢, d constants)
Show, by induction, T'(n) = (¢ + d)n + c.
Base case £ =0: T'(0) = (¢ +d) - 0+ ¢ = ¢ correct
Assume T'(¢) = (¢ + d){ + c true for all £ < n.

Tn)=Tk)+Tn—k—-1)+d=
=[(c+dk+c+[(c+td)(n—k—-1)+c]+d=(c+dn+c=0(n) O

As discussed next, binary search trees support the queries search, find minimum, find maximum, ...

Each query can be done on O(h) time on any binary search tree of height h.
Recall: height of tree T is h(T') = #tedges along longest simple path from pr to a leaf.

find value k in subtree rooted at x
Tree-Search(z, k)
1 IF (z = NIL or k = x.key) THEN
2 RETURN x
3 IF (k < z.key) THEN
A @
)

RETURN Tree-Search(x.left, k)
5 ELSE RETURN Tree-Search(z.right, k)

& @

Tree-Search(T.root, 6)

79



The Tree-Search procedure begins its search at the root and traces a simple “downward” path

If k = x.key, search terminates (k found). If z = NIL, search terminates (k not found).
Hence, k # x.key and = # NIL implies either k < xz.key (continue left) or k > x.key (continue right).

Due to binary-search-tree property, Tree-Search is correct.

The nodes encountered during the recursion form a simple path downward from the root of the tree, and thus
the running time of Tree-Search is O(h) where h is the height of the tree.

Find minimum key in 7'(z) assuming x #
NIL
Tree-Min(z)
1| WHILE (z.left # NIL) DO
2 x = x.left
3 RETURN x

Find maximum key in 7'(x) assuming = #
NIL
Tree-Max(x)
1 WHILE (z.right # NIL) DO
2 x = x.right
3 RETURN x

d

Tree-Max(T.root)

Similar arguments as before show that Tree-Min(z), resp., Tree-Max(z) correctly determines the max, resp.,
min element in the subtree rooted at x in O(h) time where h is the height of the tree.

Tree-Insert(T), 2)
1 z :=T.root //node being compared with z
2 y:=NIL //y will be parent of z
3 WHILE (z # NIL)

descend until reaching a leaf (®) @\

y=z \ &

IF (z.key < x.key) THEN x := z.left G, @

ELSE z = z.right @ O
z.top =y © @ @/

found the location - insert z with parent y
IF (y = NIL) THEN T'.root := z //T was empty get left tree by insertion in order e.g. 6,5,5,2,7,8

9 ELSEIF (z.key < y.key) THEN y.left =z get right tree by insertion in order e.g. 2,5,7,6,5,8
10 ELSE y.right = z

FEzxample board

co

80



BiNaRy SEARCH TREE

/u(c.r(:f tRomne  T=@ L e arcet bt
72 gcolu: (s‘, é)

Tfa_—1Mba: (Tc &) // T=¢ So-!of, II_Z-) e{.-/'ogtt(\.}{(,

L1 x = T.eoot = NIL
L2 o,leL.

.2 WHILE wot ved am x = NIL ToP | L wey
L£ = ofrc 23 [ve |wn | g5

L.3 }'I"OP—_j:NH,

L. ¢ IF ( '-1: ML) = Tvoot:= 2 — % T ropt = 2 =ﬂ
S '_: |
e = 7| IOQ&
m v e o =
Tf‘-bu_[(,‘s(,.'l; LT\.}_.) 2 vie w6 | v
ToP | L ey 3 -
Lll X = T”’t — —— D x: NIL Wi | § Niv =1 r&ot
L )A | =NIL
L2 wHLel x # N (L)
. TeP | L |weyy | R " .
Lot s x-""ﬁ’("t vie w | | o | Mic

Lb gy x:= x.onght” (= viL)
w[nTLc—[oor WP om x=ANMIL

Lt '2'.‘-0(‘):% Up-l-f?hm:

L2 7 —_—

L'q ../' ToP [ wey 3
C .10 Q-W,g z j'/w: ML avu/\./ 5 | wn

6 =7‘1.(-L%-=}, ’,’

= T.jost




—

[nset “Shoct & simplitil et teprosecdokion;
S—/ 2( ;( X

Aunsest o oo 6

(

2 ~ 2 - 2
S
5 2e
\; —5
/
6
/
<

b &
= T
5‘\ '

A

“
r\'\
3




Lemma. Tree-Insert(T,z) yields a BST and runs in O(h) time where h = height of tree [exercise]

Tree-Delete(T, z) (pseudocode = exercise)

\ CASE 2 has no child:
\ just delete z
\ ! = T-z is BST

: ) CASE 2 has one child:

Delete z and make child x of z ..

.. the right child of parent(z) = v in case z is right child of v
.. the left child of parent(z) = v in case z is left child of v

‘ to get tree T’

-~
~

Case: z is right child of v:
/ \ T is BST = YV win T'(2): v.key < w.key
/ \ =V win T(x): v.key < w.key
\ = VYV win T'(x): v.key < w.key
and other key "posititions" unchanged in 7"
N = T’ is BST.
/ \ (for case z is left child of v replace < by >)

) g CASE 2z has two children:
Find y in T(r) with min y.key and
such that y has no left child = y has 0 or 1 child
[latter needed if y' .key = y.key for some y'/
Delete y from T [see cases above]
Replace z by y [y = r is possible] and we get tree T"

By choice of y: Yw € T(r) : w.key < y.key
Since T' is BST:Vw' € T(¢) : w'.key < z.key < y.key
= VYw e T'(r):
y.key < w.key and Vu' € T(0) : w'.key < y.key
and other key "posititions" unchanged in 7"
= T’ is BST

Delete vertex w means remove w from V(7) and all edges from E(7) that contain w !! [Ezample
Board]

Lemma. Tree-Delete(T,z) yields a BST and runs in O(h) time where h = height of tree [exercise]

83



e
Vi
1 ™ 40
a0 ddile 2 7S o
€ 7N 72 ab
f 1) ab /o
t’% /\. 7.0 14
. 14
Vi ~
S~
1 10
\40 iba;fi Z “ e
2 & . 72 ab
! 71 ab = 2 yan
7 /N 1. 14
2 1Y
1 1
a0 Julate 2 a2
/O~ NG« — /N S
£ 7N g VAN
/ 7 ab ; 4 b
o P
¢

0 ol
miec [u T(r\ q_t lj L\M n WU(/W

>
Siua :S{ man =) GUL“U&LA (b TCF) e = H%
While 2y £y.luy  (as g eT(A)D

=> corwech . !




To summarize at this point:

e queries as search, find minimum, find maximum as well as insertion, deletion can be done in O(h) time
in binary search trees where h = height of tree.

e Problem: O(h) = O(n) where n =number of vertices [can we control the height?|

N R
clRe Q hoy
& © @/@ 2 @

e We consider now AVL trees and Red-Black trees that are one of many search-tree schemes that are
“balanced” in order to guarantee that basic dynamic-set operations take O(logn) time in the worst case.

3.2.2 AVL Trees

Recall
e height of z in T h(x) := #edges along longest simple path from z to a leaf | <y x
e height of T: h(T) = h(pr), i.e., height of root pr of T

e We define the height of an empty tree as h(0)) = —1.

An AVL tree is a binary search tree (BST) in which the height of the two subtree rooted at children of any
vertex differ by at most 1.

More formal:
e Define the balance factor of z in a binary tree T' as BF(z) = h(T(x.right)) — h(T (z.left)).
e A binary tree is balanced if BF(z) € {1,0,—1} for all nodes z in T
e A balanced BST T is called AVL tree.

[AVL named after inventors Adelson-Velsky and Landis]

Which of the trees is balanced?

Ta Te T2 Tw Ts
Which of the tree is balanced?
Br )
1 0 4& a
° 0 SO
k A o\ o
o ' T, wot bolorsd: T bolonad Te bolanad

T, belanced

T, we¥ bolaned

T is AVL tree = if T is a balanced BST, i.e., BF(z) € {1,0,—1} for all nodes z in T with BF(z) =
h(T (z.right)) — h(T(z.left)).

85



Lemma. Any AVL tree with n nodes has height O(logn).

Proof: Let N; = min number of vertices in AVL tree of height h = N, =14+ Nj_1 4+ Nj_o

h=0 | ket be2
N :L } 7o u/j" />\/<\ ‘0”‘ /<>\

724:.1 h
-t et k—l{ § b2 u—z{Q] h-
IAN] X

Np=1+Np_1+ Np_o
We now show, by induction on h, that Nj > 251 for all h >0

Base cases: h=0 — Nh:1>2%_1:0.5andh:1 o Nh:2>2%_120.71

heo ket (b
NN A DL AN

gl
A R H{ § b2 n—z{Q] he-t
IAN] X

Assume now that Ny, > 25! for all k € {0,1,...,h—1}.

Let T be an AVL tree of height h with N, vertices.

Ind.hyp. h—2

Hence, Ny =1+ Ny 1+ Np_o > 1+2N, o >2N, o > 2272 Y= 2"3% — 981

(which completes induct.-proof)

— N >2371 = logy(Ny) > —1 <= 2logy(Ny) +2>h
For general AVL tree T' with height h it holds that |V(T')| > Np,
= h < 2logy(Np) + 2 < 2log,(|V(T)]) + 2 and thus, h € O(log,(|[V(T)])) O

Thus, queries as search, find_minimum, find _maximum as well as insert and delete can be done in h € O(logn)
time in AVL trees.

However, after a single use of the operations insert and delete it is not ensured that the resulting tree is still
balanced, that is, the BST is possibly not an AVL tree.

86



g—

'®
"G{ S

e
‘)albwu—d 0

wot belouced.

Hence, it is not ensured that the latter operations still run in O(logn) time = must correct trees to obtain
AVL trees

These corrections should run in O(logn) time to ensure that the overall time complexity together with the
operations as above remains in O(logn)

An important role for obtaining a AVL tree after insertion/deletion are rotations:

R

/ P X o Fu/ X

[Some Ezamples on Board]

Rotations in BST preserve binary-search tree properies: "a.keys" < z.key < "B.keys" < y.key < "~v.keys"
Note, a rotation is just a "rearrangement" of a constant nr. of pointers and thus runs in ©(1) time

[pseudocode = exercise (don’t forget cases as y is right/left of parents_y, x ory is root, ... )]

87



Efﬂwvfu//l. Rfﬂ&um ;

Leorcl e
A;)x 10
.L/ \40 v lefh-cotots (5>) 5_/ Sz
/. -
&£ ap, Z/ \8
/\
6 94 6/\9
7%«/004/ e MA%&M '
Y 40 5
p / Sz n%f—WEUO) /N
S -2 10
/ N\ [\
2 8 &£
AN /\

6 9

6

3




Inserting a vertex x to T is done as in case for BST via Tree-Insert(T,z) — we get BST T + z which might

be imbalanced (corrections!).

Corrections of tree T' 4 = are based on the following cases for parent p of x in T + x.

We denote with BFp(v) the balance factor of v in tree T”

Since p is parent of  in T + x it can have at most one child (since T + z is binary search tree)

[1] p has right child y but no left child:

Since T is balanced, y must be a leaf and BFp(p) =0— (—1) = +1

After inserting x: BFr.(p) =0 and BFr(v) = BFr,(v) for all v € V(T
(since height of T'(v) remains unchanged for all v € V(T )

= T+ is an AVL tree. [nothing to correct]

[2] p has left child y but no right child:

Since T is balanced, y must be a leaf and BFp(p) = —1—-0= —

After inserting x: BFr.(p) =0 and BFr(v) = BFr.(v) for all v € V(T
(since height of T'(v) remains unchanged for all v € V(T )

= T+ is an AVL tree. [nothing to correct]

[3] p has no child:

Since p is a leaf, BFp(p) = -1 —(-1) =0
After inserting x: BFri,(p) € {+1,—1} and BFr(v) # BFri,(v) might be
possible for v € V(T

Note, if BFr(v) # BFri.(v), then v is located on path from p to p, i.e.,
at most h = O(log(n)) vertices could be affected [possible correction needed]

LA
A

.

In BFpi,(v) € {—2,-1,0,+1,+2} since height of T is increased by at most 1 in T+ x

Let u be a vertex with child v in 7" where v is located in the subtree with greater height.

4 cases that yield different "types of rotations":

Left-Left-Case

Right-Right-Case

1. BFr/(u) = =2, BFp/(v) € {0,—1}: single rotation right rot(u)

2. BFr/(u) = +2, BFp(v) € {0,+1}: single rotation left rot(u)

3. BFr/(u) = =2, BFp/(v) = +1: double rotation left rot(v) + right rot(u) Left-Right-Case
4. BFp/(u) = 42, BFp/(v) = —1: double rotation right rot(v) + left rot(u) Right-Left-Case

89



h+1

h+2--
u— Left — v — Left right _rot(u)

left rot(u)

u — Left — v — Right left _rot(v) + right _rot(u)

90



u— Right — v — Left right _rot(v) + left_rot(u)

Let T 4 x be BST obtained from AVL tree after inserting x.

Next "rebalancing" algorithm applied on 77 = T' + x ensures that the resulting tree is an AVL tree.

pseudocode - sketch ReBalance:

FOR all vertices u on path from z to root (in this order) DO

e IF BFp/(u) = —2 THEN consider left child v of u. //Left
IF BFr/ (v) < 0 THEN right _rot(u). //Left-Left
ELSE left rot(v) and right _rot(u). //Left-Right

e IF BFp/(u) = 42 THEN consider right child v of u. //Right
IF BFr/(v) > 0 THEN left rot(u). //Right-Right
ELSE right _rot(v) and left rot(u). //Right-Left

[Ezxample Board]

91



(e Lk rot Cr) gtk ro (?,) m-JL‘J—mé(P) &x/?’ﬂ/:(?)
h‘g{{A toot (q_\ a//‘ W (?J

fhyure 4o AUL
gkw
C&?_{ Lﬂ‘ca/h‘(_
43 4y oy 9N 129 72 Lo lket( 1) © 22
= / e 048 ~ “
A8 < - 4 w%/«hot('-(?»)
"2z
‘3 122 22Y
—_—> -1/ & o.ﬂspad n 48/ ™~ 43 &M?Wd “48/ %3
4R 43 — / — /\
ﬁ/ +24 04 \ML o 4\t
aubrot, 12 LL come. b/
A&
N
- 3/ )?—2 Q
/ 3
0l 24
\,(v, R LR - con /AO" “
22
- a/ 22 [J_%:ob(@) / \ / \ "
;YL Nug ;4 2 3
'['16 1) hWrOth)



RUNTIME-sketch (insert incl. rebalancing):

Costs for inserting a new vertex: O(log(n)) time.

Costs for single/double rotation: O(1) time.

there are at most h = log(n) vertices along path from z to root.

determining BF's in T + z can be done in O(1) time

(since it is determined by the BF's in T' [advanced exercise))

Total time for insert (incl. rebalancing): O(log(n))

Deleting a vertex x to T' is done as in case for BST via Tree-Delete(T,z) = we get BST T + = which might
be imbalanced (corrections!).

Now apply pseudocode - sketch ReBalance:
— Total time for delete in AVL tree (incl. rebalancing): O(log(n))

[Ezample Board]

93



Q/I
/ N
£-v
/. IZ-‘\).Z
7 / )
170 ° g R —cone
A
Ak & /[ NSV gkt W)
g' 2 / \ ) . Mt ot (u )
12 - Lo
/9
/ 10
V%L{ME[U» A3 \o
i /Y s
IN ety e
7 a2 —> / \ 20
/\\S F A0
LI




3.2.3 Red-Black Trees

To summarize at this point:

e queries as search, find minimum, find maximum as well as insertion, deletion can be done in O(h) time
in binary search trees where h = height of tree.

e Problem: O(h) = O(n) where n =number of vertices [can we control the height?]

e Answer: In AVL tree we can control height h € O(logn)

We continue now with Red-Black trees that are one of many search-tree schemes that are “balanced” in
order to guarantee that basic dynamic-set operations take O(logn) time in the worst case.

In Red-Black trees we have one extra bit of storage per node: its color, either RED or BLACK.

A Red-Black tree is a binary search tree that satisfies the following Red-Black properties:

I. (a) Every node is either RED or BLACK. (b) The root is BLACK. (¢) Every leaf (T.nil) is BLACK.
II. If a node is RED, then each of its children must be BLACK
III. For each node x, all simple paths from x to descendant leaves contain the same number of BLACK nodes.

Qo i 9 ,e.;;;’"°"“*--~e

%0 o° o o ©0 .0

95



If a child or the parent of a node does not exist, the corresponding pointer attribute of the node contains the
value NTL: Think of these NILs as pointers to leaves (external nodes) of the binary search tree and the normal,
key-bearing nodes as internal nodes of the tree. Those NIL-leaves are always supposed to be BLACK.

As a matter of convenience in dealing with boundary conditions and for having simpler code, we use a single

sentinel T.nil (sv: viktare) to represent NIL and that is always of color BLACK and we don’t care about T'.nils’
other attributes = Red-Black tree is fully binary

black-height bh(x) = number of BLACK nodes on any simple path from, but not including, node x down to a
leaf (T.nil)

Lemma. Any Red-Black tree with n internal nodes (=vertices x with x.key # NIL) has height O(logn)

[proof board]

96



WED - ALACK - ~ee

loweri red -6l it p Alnel vodes fon Loptt Olly )

SLOW A'YQJ-.'
‘Drgeﬁ-' 6%/‘4, Sebbee T(e) wobed ot x
wt st 2% L ppboued aeden,

oulenian

ij snddnchive g, Au%ré ?ﬁx
1 F A,C}(}:O =) X '&alﬂl (5 ’VI/L)
= Lh(x) =0
o 20 1= O wuten.aede)

Now b bixy>O0 = x wot dafd (+010)
,/?7 wMLmJ.wh) x  Meat beve 220, lole.. .

NIL bl
< CAIL paseivl ]

X et . n‘%b .

f A = o x bmch o olls + T do fhix)
vy fum 2 odl | 0" fo 64 (<),

- bhx)-L | f 2 black
IAEDE )
2 [;um 5 af & e
Note h(z)e bilx) = com oty wd om—frloon
D T(2) hoee ot bt )P4 ool

o bhi(z) = fhix) -1
thlx)-l__/l_ wadlen .
= T2 haw dt Lot 2

=)

S x oo 2 ddtde.
= qx) bes of A€
,Z‘(,Zé“k)—i—4)+ﬂl St Poldes
2 clulobren X

= 2/4"-0‘3 — 7 rbooeed cioelts .

Ead - peoo] - of CLAIM
To cowplide poof of femt | Lt A L
Aa}/ue of He Thu
Accorolng Ao fupfwﬁdt,, 2 (Lﬁ/‘i é,Z:a,Wj;w)
% vedicer  om any Simph ,,,,44 /,M

root A o ,&,’6[ ot el rao() P
be bleclk

—>

v

= bl ( rest) 2 %—

. p,le(mof)_\ le”\

= g (net) = £ o he oftg(-)) 2
[

CLAtn




Thus, queries as search, find minimum, find maximum as well as insert and delete can be done in O(h) =
O(logn) time in Red-Black trees. However, after a single of the operations insert and delete it is not ensured
that the resulting tree is a Red-Black tree and so, h > log(n) might be possible.

In this case, it is not ensured anymore that the latter operations still run in O(logn) time

insert key=36: where and which color? Due to Cond. II it must be BLACK BUT then Cond. III is violated
We show now how to insert into and delete from a Red-Black tree in O(logn) time while preserving the Red-
Black properties.

98



RB-Insert(T, z)
1 Tree-Insert(T,z)
2 z.aright =T.NIL and z.left :=T.NIL
both of z’s children are the sentinel
3 z.color = RED
4 RB-Insert-Fixup(T), z)

Insert as in usual binary search tree + Line 2,3,/

We use RB-Insert-Fixup(T,z) which is based on re-
coloring and rotations to fix issues that may occur in 1.b
and II.

Coloring z BLACK would yield other issues that are
harder to fix!

g Q—Jranalpnrud‘ of %
/ \
. C A ~N

uncle / ra.rcn'('. o‘[ %
Df 2
Z

Notation in binary tree (left&right not important in
this fig!)

Scenarios where z needs some fix up:

Ib z is the root (T was empty at start)
Which Red-Black properties could be violated?

L.a Every node is either RED or BLACK. OK!
I.b The root is BLACK OK, unless z is now root.

I1. parent of z is RED

Then we distinguish:

i. uncle of z is RED I.c Every leaf (T.nil) is BLack. OK!

.. . . II If a node is RED, then each of its children must be
ii. uncle of z is BLACK (triangle) BLACK
iii. uncle of z is BLACK (line) violated if (z.top).color is RED

IIT For each node x, all simple paths from x to descen-
dant leaves contain the same number of BLACK
nodes.

OK! hence, bh(z) remains unchanged for all

”
Scenarios where z needs some fix up:

g 4——J¢’-nalpanu'l' of %
/ \

Lb z is the root (T was empty at start)

: '\ rarcnf. o{ Py II parent of z is RED
u;fc f‘_- / Then we distinguish:
= i. uncle of z is RED
Notation in binary tree (left&right not important in ii. uncle of = is BLACK (triangle)

this fig!
Is fig!) iti. uncle of z is BLACK (line)

99



Case (1.b): recolor z to BLACK = we get a valid Red-Black-tree with single root z

Case (I.i):

¢

e = 0w
& &

Of course this may cause further violations if parent of B is red, but this will be corrected afterwards.

Case (I1.i):
triangle: either A left of B and z right of A or A right of B and z left of A

5

@ — rofote é.‘{’orh\ @
B sypest seton @
@/ “opp o5k dicechon @
9& @c,.kdl\ 4 @
i— w("l’ A

Still IT (node is RED, children BLACK ) is violated, but now we are in Case ILiii with A playing the role of z

Case (I1.):

100



Case (Il.4ii):
line: either A left of B and z left of A or A right of B and z left of A

B\A A/B
N /
2z 2

Case (Il.ii):
line: either A left of B and z left of A or A right of B and z left of A

g robote 2. +0f {op |n/ " \-C(.olor

@ ‘opp 061 a(.mbow
@ B i @ e
VAN 5

Working Example Board.

101



Rep S UACU-TREE EXAMPU= (,nns‘/t)

Cone 4-'&’) 2 rook vg T = reooles 2 L Lep

7—/ chu.{- o{ 2z s RED:

o, &
/@‘/ gemsf=c B{ neoler, ot Hecr
N ralay , s e
(
s @ ®&FFMM A.u;, 8. ey, C-leeyy
1

@ 2. W} .

ABCIZ ot novis

Recoler A8, C

d®@ — f@”?ﬁ?‘”*‘“

CL-'«. € e Coroment £ =2'f(’J

,n) wele BLACK (h-'a.?a)

f @ rolol. A' u: 2 M’QZA
o”ns = ﬂ,;#.p.,m {7‘,&)

;}:Fa: do

(&r< > i @p® = Come (4]

A (@U "J rele
) ueel Blech ( Liae)
\ rolate @
@ fn opf °5.
of 2 pot
Fo & .

[[mu v (ovmen !

r=2pJ

C@/\

\
¢

tightrob. ( l_y)
—

(7 L'r »)

Ab
/'hgtrl' 15 @ — @

Anyerk S /

n okl otk !

(’-f- Tmie” )

Ausert A0

= nyat rolede (Ti15)Y:




RB-INSERT-FIXUP (T, z)
1 while z.p.color == RED

To summarize in a nutshell: i ifz.p== z.p.p.lefth
= Z.p.p. t
Insert =z . as in u.suall BST and .then 4 i);'y.c;lﬁrpziliED
RB-Insert-Fixup(T,t) which is based on 4 scenarios: 5 /Jcase ILi 2.p.color = BLACK
. 6 //case I1.i y.color = BLACK
Lb 2 s the root = Re-color = 7 //case IL.i Z.p.p.color = RED
IT parent of z is RED 8 /fcase ILi < =2z.pp
9 else if z == z.p.right
i. uncle of z is RED 10 //case ILii Z=2z.p
—> Recolor + Repeat with "new z" (L.8) 11 //case ILii LEFT-ROTATE(T, 2)
12 //case IL.iii ~ z.p.color = BLACK
ii. uncle of z is BLACK (triangle) 13 /[case IL.iii  z.p.p.color = RED
— Rotate parent of z | 14 //case I1.iii RIGHT—ROTATE(T,Z.[J.[))
. 15 else (same as then clause
Repeat with "new z" (L.10
epeat with "new 2" ( ) with “right” and “left” exchanged)
iii. uncle of z is BLACK (line) 16 T.root.color = BLACK //case I.b
— Rotate grandparent of z and recolor v.p means parent of v (=v.top)

Souce: Introduction to Algorithms (3rd edition), Cor-
men

Theorem. Insertion of elements into Red-Black tree while maintaining Red-Black properties can be done
O(log(n)) time

Proof. Correctness of RB-Insert(7, z) and RB-Insert-Fixup(7,z), see Sec 13.3 in Cormen-course-book for
more details.

RB-Insert(T,z) runs in O(h(T)) = O(log(n)) time.

RB-Insert-Fixup(T,z): for each z constant "reassignments" of pointers.

All "new.z" that might cause conflicts and need to be fixed up are ancestors of the "original 2" = While-loop
executions: O(log(n)). O

Deletion is much more involved and omitted here, see Sec 13.4 in Cormen-course-book for more details.

3.2.4 Summary

We considered the class of binary search trees (BST).
In particular, we had a closer look to the subclasses:

o AVL trees
e Red-Black trees

Question: when using AVL tree, when Red-Black trees?

Since the invention of AVL trees in 1962 and Red-black trees in 1978, researchers were divided in two separated
communities, AVL supporters and Red-Black ones.

Often, AVL trees are used for retrieval applications (Search Engines, Database queries) whereas Red Black trees
are used in updates operation (insertion, replace information)

Worst case AVL Red-Black
Height 1.44 Log (n) 2 log (n+1)
Updates complexity O(Log (n)) O(Log (n))
Retrieval Complexity O(Log (n)) O(Log (n))
Rotations for insert 2 2
Rotations for delete Log (n) 3

AVL and Red-Black tree as a single balanced tree, Bounif and Zegour, Proc. of the Fourth Intl. Conf.
Advances in Computing, Communication and Information Technology, 2016

103



Chapter 4

Hashing

4.1 The Idea and Notation

e Many applications require dictionary, i.e., a dynamic set that supports only the operations INSERT,
SEARCH, DELETE.

e A hash table is an effective data structure for implementing dictionaries.
Side note: the built-in dictionaries of Python are implemented with hash tables.

e Although searching for an element in a hash table can take as long as searching for an element in a linked
list - ©(n) time in the worst case - in practice, hashing performs extremely well.

Under reasonable assumptions, the average time to search for an element in a hash table is O(1).

When a customer buys products, you have to look up
the prices in this huge list of n elements.

How much is a bread? O(n) time :(!

What if we have a function
h: products — listNr

EGGS — 1
MILK — 2

BREAD ~ 103

Then, look up at takes O(1) time
This is the essential idea of hashing, i.e, the function
POV: You work at a grocery store and have maps keys (here: products) together with their satel-

th.is ) ) lite data (here: prices) to some entry in an array (hash
"list" of items in unsorted order together table).

with prices.

104



[
A N
+ — [EebsT 4L
2 s [k (13 8]
e

102 f—b[DREAD (32 F

Idea: Use hash function h: U — {0,...,m — 1} where m < |U]|

Interpreting keys as numbers
e Most hash functions assume that the universe of keys is the set No = {0, 1,2, ...}

e If that is not the case, we need to interpret (injective mapping) them as numbers

Example: A string s = sp$7 ... s, of characters may be interpreted as a number in the following way:

e Look up ascii-code of each character (www.ascii-code.com)

e Each character s; is associated with a number a; in {0,...,127}

Then s can be interpreted as a number k in a base 128 system:

k= ET: a; - 128
1=0

Example: for string s =Mia we have M = 77, i = 105, a = 97 (ASCII)
Thus, Mia corresponds to number k = 77 + 105 - 128 + 97 - 1282 = 1602765

In what follows, we (mainly) assume that the keys are natural numbers.

Let T[0..m — 1] be an array of size m (hash table).
Let U be the “universe” of all potential keys. In practice, we are often interested in subsets K C U only.

The size m of the hash table is typically much less than |U].

A hash function
h:U —{0,...,m—1}

is a map that assigns to each key k € U a number h(k) € {0,...,m — 1} as a potential slot in the hash table T

We say that an element with key k hashes to slot h(k) and that h(k) is the hash value of key k.

Since usually m < |U]|, it is easy to see that h is not necessarily injective (collisions)!

105



4.2 Types and choice of hash functions

There are different ways of defining hash functions. The typical ways are:
e Direct Addressing (perfect hashing)
e “Non-Direct” Addressing

Division Method
Multiplication method
— Random Method

— Selecting hash function from a set of well-designed hash functions

4.2.1 Direct Addressing

Direct addressing is a simple technique that works well T
when the universe U of keys is reasonably small. 7 ; (]‘ kc< >m,lmc data
Let U be the universe and suppose |U| that is not too (INERCOTkan ] i 2
large = : 3
Exmpl: U = set of all possible membership IDs in sports —5—>l5] ]
club in a town of a small number |U| of people. (no two /|°
members have the same ID) / ;
— 5] ]
Init hash table T'[0..|U]| — 1]. /
Choose h: U — {0,...,|U| —1} as a bijective map (e.g. via total/lexicographic order order on elements in U).

We are interested in K C U (e.g. all those people in the town that actually are member of sports club.)
Hence, h: K — {0,...,|U| — 1} is injective, and

T'[h(k)] points to the element with key k or is NULL, when this key is not in the set

This allows an O(1) time search (called perfect hashing)

Problems:

e If U gets large or infinite, storing an array T of size |U| may be impractical, or even impossible, given the
memory available on a typical computer. (e.g. U = {all phone numbers})

e If actual sets K C U of used keys are much smaller than U, then a direct-address table is a big waste of
space

Solution: Use hash function h: U — {0,...,m — 1} where m < |U]

4.2.2 "Non-Direct" Addressing

If direct addressing is not feasible, use a hash function h: U — {0,...,m — 1} where m < |U]

A good hash function should be as easy and fast to compute as possible and evenly distribute the data records
to be stored across the hash table to avoid collisions.

In other words, a good hash function satisies (approximately) the assumption of simple uniform hashing:
Each key is equally likely to hash to any of the m slots, independently of where any other key has hashed to

Unfortunately, you typically have no way to check this condition, unless you happen to know the probability
distribution from which the keys are drawn. Moreover, the keys might not be drawn independently (e.g.
U = {all phone numbers} and two phone numbers k; # ko often share the same prefix, the area code).

Choose m in the order of the number of elements expected to be stored ["good" m depend on h|

106



Division Method

A natural way is the division method where a hash function is maps a key k into one of m slots by taking
the remainder of k divided by m. That is, the hash function is

h(k) = k mod m
Example: If m = 12 and key is k = 100, then h(k) = 4.

Since it requires only a single division operation, hashing by division is quite fast.

Problems one needs to be aware of:

e If m = 2P | then h(k) depends only on the last p bits of k.
Hence, all keys that agree in the last p bits hash to the same slot.
Depending on distribution of keys, performance of such a hash table may be bad.

Example: m = 22 = 4, then last 2 bits of a number in binary representation are always one of 00,01, 10, 11
and we have

k mod 4 = 0 iff last 2 bits are 00
k mod 4 = 1 iff last 2 bits are 01
k mod 4 = 2 iff last 2 bits are 10
k mod 4 = 3 iff last 2 bits are 11

e Suppose, m = 2P — 1 and we are hashing strings with the division method and are interpreting them as
base 2P numbers

Then a string s = s, - - - 5180 in which each character s; is interpreted as a number in {0, ..., 2P} hashes to

h(s) = (Z S; + (2p)i> mod (27 — 1) (27)" mod (2” — 1) = 1 + mod-rules
=0

= (i sl> mod (2P — 1)
i=0

Thus, the hash value of a string is ‘nvariant against permutations of the string.

Example: s =Mia via ASCI: M =77, i = 105, a = 97
= 5= 77+ 105-128 4+ 97 - 1282 = 1602765 and s’ =iMa = 105 + 77 - 128 + 97 - 1282 = 1599209
= h(s) = 1602765 mod 127 = 25 = h(s’) = 1599209 mod 127

Solutions to the latter problems are provided by carefully choosing m.
Usually m is a particular well-chosen prime number = number theory (not part of this course)

107



Further Methods

Further ways:
e multiplication method where a hash function is created that maps a key k into one of m slots by using
h(k) = [m(k¢ mod 1)],

where ¢ € (0,1) is an (irrational) number and "k¢ mod 1" means the fractional part of k¢, that is,

ko — ko]
e random method, e.g., by using key k as the seed for a random number generator producing a number
between 0,1,...,m —1

e Selecting h € H: randomly pick h from a precomputed and carefully designed set H of hashfunction

Summary
The behavior/performance of a hash function depends on the chosen set of keys.
e Therefore, they can only be insufficiently studied theoretically or with the help of analytical models.

e Given a hash function, it is always possible to find a set of keys for which it generates many collisions.

e No hash function is always better than all others.

However, there are several empirical studies on the quality of different hash functions.

e The division method is generally the most efficient; however, for certain sets of keys, other techniques may
perform better.

e If the key distribution is unknown, then the division method is the preferred hashing technique.

e Important: Use sufficiently large hash table and use a prime number as divisor.

e Moreover, hashing is, in practice not based on a fixed hash function, but on carefully designed sets H of
hash functions from which we randomly pick one.

4.3 Collisions

If direct addressing is not feasible, use a hash function h: U — {0,...,m — 1} where m < |U]

U=z nowmes of pesens

Cavrtut

kL,Js(nast) h:U—L004,--4} 2 B e
Jan > hifan)-1 =P E
A do = hldclo) = 2.
Mio = Alho)=4 3
Tod

= hi(loq4 )7 O y e tellit dola
o

N@W add T-ir\q, ot h(Tim) e 60,4“‘{3 I’co“/}(..vld‘

108



0

(universe of keys) )

h(ky)

hky) = h(ks)

h(ks)

m—1

Problem: different keys may receive the same h value (collision)

Question: How likely is it that two keys receive the same h value assuming that h(k) is randomly chosen for all
keys k7

A problem that is similar in fashion:
Birthday problem: what is the probability that, in a set of £ randomly chosen people, at least two will share
a birthday.

Here m = 365 and, say ¢ = 23 persons (keys) — What is your gut feeling ¢
There are Hfil 365 = 36522 variations of all-birthday-person-cases (all cases equality likely).
Let us consider the nr ¢ of cases that all persons have a birthday on different days

(1st person 365 possibilities, 2nd person remaining 364 days, ... ):

c=365-364-363----- 343

Probability p that all 23 persons have a birthday on different days

365364363343
o 36523

Probability p’ that there are at least two persons having the same birthday

, . 365-364-363-----343
p= 3652

~ 0.51

With a 51% chance two elements collide when ¢ = 23 < m = 365

1.0

0.8

¢
o

— Probability of a pair |
— Probability of no matching pair

Probability
o
w

I
IS

0.2

~23
10 20 30 40 50 60 70 80 90
Number of people

0,00

source: wikipedia (red-line: at least 2 have same birthday, blue-line: all different birthdays)

109



Even for £ = 23 keys and m = 365 slots the chances are 51% to have collisions
= collisions MUST BE addressed!

A collision occurs when two keys hash to the same slot.

Question:

e How to deal with and to resolve collisions?

There are two main approaches:
e Resolving collision via chaining

e Resolving collision via open addressing

4.4 Resolving collision

4.4.1 Resolving collision via chaining
Chaining:
e T[j] .= NIL if no element in the set has a key k with Hashing h(k) = j
e Otherwise, store at T'[j] the pointer to the head of a doubly-linked list of all such elements

List=Learet (L 1) rdwns

oo et

.7| -l::l— |46| _m_ |"f|~u.|

[ —;
x with *leey = Ak

NI

T LL\uML—_"

Lok - PrePed (¢ ) 5

o AR ETRETRA | bend— [wefo] T} [9] 3= [«] F=F [9]w]
Lest - petrbe 0 TEss oIS
I‘-rIV.mx(‘ ‘:’P,,_‘, :(_u:;i-frul
s ¢
L hemd— [wn]eo] 3=F T2 3= Teel F=F T[]
ey X LRl

basic operations on doubly-linked lists L. and hash-tables T:

List-Search(L, k) //finds the first element with key k in list L by a simple linear search
returning a pointer to this element
1 z := L.head //z is pointer to first element in L
2 WHILE x # NIL and z.key # k DO
3 z:i==z.next
4 return z

Chained-Hash-Search(7,k)
1 return List-Search(T'([h(k)]),k) //Takes time proportional to number of elements in list T'[h(k)].

110



List-PrePend(L,x) //inserts object/element = to the front of L

1 z.next := L.head //x is pointer to first element in L
2 x.prev:= NIL

3 IF L.head # NIL THEN L.head.prev := x

4 L.head =z

Chained-Hash-Insert (7T ,x)
1 List-PrePend(T'[h(x.key)],z) //Takes constant time if we assume that x is not already in the hash table
(if not known, do a search first).

List-Delete(L,z)
deletes object/element 2 from L (It must be given a pointer to z)
1 IF x.prev # NIL THEN z.prev.next := x.next
2 ELSE L.head := x.next
2 IF x.next # NIL THEN x.next.prev = x.prev

To delete an element with a given key k, fist call List-Search(L,k) to retrieve a pointer to the element
Chained-Hash-Delete (7, x)

I List-Delete(T[h(x.key)],x) Takes constant time if we have pointer to x
(if pointer not known, do a search first).

How well does hashing with chaining perform? In particular, how long does it take to search for an element
with a given key?

Given: A hash table T' with m slots that stores n elements

Worst case: h maps all n element to same slot (that is, the list to which T[] points to for some i)
= seaching takes O(n) time + time to compute hash function
= no better than using one linked list for all the elements.

Average case is more interesting !
We define the load factor o for T" as
a=n/m,

that is, the average number of elements stored in a list T'[i], ¢ € {1,...,m}.
The average-case performance of hashing depends on how well the hash function h distributes the set of keys
to be stored among the m slots, on the average.
A hash function A is simple uniform:

e Any given element is equally likely to hash into any of the m slots and

e where a given element hashes to is independent of where any other elements hash to.

Theorem. In hashing with chaining a search takes average-case time O(1+«) under the simple uniform hashing
assumption.

[proof omitted - see Cormen course book/

= if n < m then o <1 and thus, O(1 + a) = O(1)
= Insert-, Delete-, Search-operations take constant ezpected time and

Insert- and Delete-operations take constant time in the worst-case

111



4.4.2 Resolving collision via open addressing

In contrast to chaining, in open addressing, all elements occupy the hash table itself. That is, each hash table
entry contains either an element of the dynamic set or NIL.

The idea: when trying to enter the key k into the hash table at position h(k) and it is discovered that T[h(k)]
is already occupied, then — according to a fixed rule — unoccupied space (an open one) is used to accommodate
k.

Since you cannot know in advance which locations will be occupied and which will not, you define an order for
each key in which all storage locations are viewed, one after the other. As soon as a space in question is free,
the key is stored there.

In open addressing, the hash function A is a function
h:Ux{0,1,...,m—1} = {0,1,...,m —1}

such that (h(k,0), h(k,1),...,h(k,m—1)) is a permutation of (0,1,...,m —1) for every k € U, called the probe
sequence.

Examples (k€ U,i € {0,...,m —1} and h': U — {0,...,m — 1} is "auxiliary" hash functions):
e linear probing uses hash function h(k,7) = (h'(k) + a - i) mod m, a # 0 constant

Example (Linear Probing)
Insert in order: 79, 28, 49, 88, 59 into hash table of size m = 10.

Assume: h/(k) =k and a = 1 (just for simplicity)
Recall: h(k,i) = (h'(k) 4+ i) mod 10, i = 0,1,2,...

0|1(2|3[4]5]6|7]8]9

We now add 79 and then 28

01234567 8| 9
28 | 79

h(79,0) = (79 + 0) mod 10 = 9 = slot 9 unoccupied = T'[9] = 79
Then, h(28,0) = (28 + 0) mod 10 = 8 = slot 8 unoccupied = T'[8] = 28

01234567 8| 9
49 28 179

Since h(49,0) = (49 + 0) mod 10 = 9 and slot 9 is already occupied, we have a collision.
Since h(49,1) = (49 4+ 1) mod 10 = 0 and slot 0 is unoccupied = T'[0] = 49

O 1234|567 8| 9

49 | 88 28 | 79
h(88,0) = (88 4+ 0) mod 10 = 8 occupied!
h(88,1) = (88 4+ 1) mod 10 = 9 occupied!
h(88,2) = (88 +2) mod 10 = 0 occupied!
h(88,3) = (88 4+ 3) mod 10 = 1 unoccupied!

O} 1| 2(3[4|5|6|7| 8| 9
49 | 88 | 59 28 | 79

h(59,0) = (59 4+ 0) mod 10 = 9 occupied!
h(59,1) = (59 4+ 1) mod 10 = 0 occupied!

112



(59,

h(59,2) = (59 + 2) mod 10 = 1 occupied!
h(59,3) = (59 4+ 3) mod 10 = 2 unoccupied!

Examples (k€ U,i € {0,...,m — 1} and W/, h"”: U — {0,...,m — 1} are "auxiliary" hash function):

linear probing uses hash function h(k,4) = (h'(k) + a - i) mod m, a # 0 constant
quadratic probing uses hash function h(k,i) = (h/(k)+a-i+b-i?) mod m where a and b # 0 are constants.

— a,b must be chosen such that the probe sequence is indeed a permutation of (0,...,m —1).

double hashing uses the hash function h(k,i) = (R'(k) + ¢ - h”(k)) mod m

— (linear probing is just a special case where h"(k) = a for all k)

— R(k) must be relatively prime to m so that all slots are probed.

We omit further theoretical aspects of runtime at this point.

4.4.3 Resolving collision: summary

Two different approaches for resolving collisions: chaining and open addressing (e.g. linear probing).

Which one is better? This question is beyond theoretical analysis, as the answer depends on the intended use
and many technical parameters?]

A disadvantage of open addressing is that search times become high when the number of elements approaches
the table size. For chaining, the expected access time remains small. On the other hand, chaining wastes space
on pointers that open addressing could use for a larger table.

However, experimental results show that both techniques performed almost equally well when they were given
the same amount of memory.

4.5

Factors Affecting Hash Function Performance

The efficiency of a hash function depends on many factors and parameters!

Type of hash function

Data type of the key space: Integer, String, ...

Distribution of currently used keys

Load factor « of the hash table

Number of records that can be stored at an address without causing collisions (List capacity)
Collision resolution technique

Possibly, the order of storing the records (open addressing)

*Algorithms and Data Structures - The Basic Toolbox, Mehlhorn and Sanders, Springer, 2008

113



4.6 An application of Hashing: Bloom Filters

Bloom filters are probabilistic data structures based on hashing to check memberships in sets.
Aim: avoid time-consuming queries.

Example: Suppose you want to register to a web-service and are ask to provide a username.

COMPUTER (You)

/ — N\ SERVER DATABASE

Question: Does your username already exist?

Answer: check in database — can be very time-consuming.

Solution: Bloom-filter "If we can say for sure that username does not exist we can skip time-consuming query!"

A Bloom filter (B, ?H) consists of
e an array B of m bits, initially all set to 0 and
e aset H ={hy,...,h;} of k independent hash functions all in range {0,...,m — 1}.

A Bloom filter (B, H) represents a set S = {x1,za, ..., x,} if, for each element = € S, the bits h;(z) are set to 1
for 1 <i<k.

Comic Example: S = {Jan, Ada, Leo, Tod}, B[0..7] = [0,0,0,0,0,0,0,0], and H = {hy}

Add Jan: hy(Jan)=1 =
Add Ada: hy(Ada) =2 =
Add Leo: hyi(Leo) =3 =
Add Tod: hi(Tod) =0 =

— oo o
_ e
_= =0
i—\HuOO
oo o
oo o
oo o
o O O O

!
!
!
]

Sl ieviiov
Il

(B, H) represents S.

Now we want to check if username "Mia" exists and say we have hy(Mia) = 4.

Since B[4] = 0, we can say for sure that "Mia" does not exist and we don’t need to look up the database S!

Now we want to check if username "Tim" exists and say we have hy(Tim) = 1.

Although B[1] = 1, we cannot say with certainty that "Tim" exists or not due to possible collisions and we
must look up S!

Comic Example: S = {Jan, Ada, Leo, Tod}, B[0..7] = [0,0,0,0,0,0,0,0], and H = {hy, ha}

hi(Jan) = 1, ho(Jan) =5
hi(Ada) = 2, hy(Ada) =
1(Ada) 2(Ada) — B=[1,1,1,1,0,1,0,1]
hi(Leo) = 3, ha(Leo) = 5
I (Tod) = 0, hy(Tod) =

(B, M) represents S.

Now we want to check if username "Mia" exists and say we have hy(Mia) = 4 and hs(Mia) = 6.

Again, since B[4] = 0, we can say for sure that "Mia" does not exist and we don’t need to look up the database
S!

114



Now we want to check if username "Tim" exists and say we have hy(T%m) = 1 and hy(Tim) = 6.
Although BJ[1] = 1 we have B[6] = 0 and we can say for sure that "Tim" does not exist and we don’t need to
look up S!

In summary, if we want to check membership:

e If B[h;(z)] = 0 for at least one ¢, then it is ensured that = ¢ S.

e Otherwise (i.e., Blh;(x)] =1 for all ¢ with 1 <4 < k), we must compare all elements in .S with z to verify
ifreSorxzd¢s.

Question: What is the false-positive rate and how can we minimize it?
Important Observation:
e We can never have false-negatives (0 bit in B leads never to wrong conclusion that key is in S)!

e However, false-positives are possible (key is "possibly" in the S (bit in B = 1), but it’s not.)

To decrease false-positive rate use more hash-functions!

False-positive rate.

We assume that all hash functions h € H are simple uniform and independent from each other.

L probability that h(z) =i and thus, B[h(z)] =1 for h € H
1— % probability that B[i] is not set to 1 by a given h € H
(1 — L)% probability that Bli] is not set to 1 by any of the k hash-functions h € H
1 1\™ 1 k 1 e 1\™ ” for large m [ 1 ™ k
From analysis: — = lim (1 — ) == (1 — ) = (1 . > = ((1 — ) ) R <> =e m
e m—00 m m m m (&
(1— L)k~ e probability that Bl[i] is not set to 1 by any h € H after "adding" the n elements from S

1-(1—L)kn~1— e~ probability that B[i] = 1 after "adding" the n clements from S

k
€= (1 - e_%) probabiliy that all k entries B[h;(z)] =1 for z
(this could cause the algorithm to erroneously claim that the element is in the set)

Observation: e decreases with increasing m (more slots) and increases with with increasing n (more elements)

Assume we have |S| = n and some m.
What is an optimal number k of hash functions?: % =0 = k="In(2)

Assume we have |S| = n, a desired false-postive rate € and an optimal k.
—nIn(e)

What is the required number m of bits?: replace k by ™ In(2) in e = m = Tn(2)2
(e < 1, so —nln(e) is positive)

Example: |S| = 1000 and want ¢ = 0.1 then we should choose m = 4800 and k ~ 3

115



Chapter 5

Elementary Graph Algorithms

5.1 Intro and Basics

Seven Bridges of Konigsberg (Euler, 1736)

KRONINGSHENRGA
-

The “first problem” in graph theory:
Is there a walk through the city that would cross each of those bridges once and only once.

116



Original article: https://scholarlycommons.pacific.edu/euler-works/
Metro Network

AVGANSTIDER | REALTID PA TUNNELBANAKARTA.SE

Morby centrum

Q Danderyds sjukhus

Hjulsta Akalla

3, Rinkeby QBergshamra

B universitetet Ropsten

@ Tekniska hogsk
§Y Girdet

X3 Hallonbergen

R, Sundbybergs centrum X Nickresen

X3 soina centrum

Ry, Huvudsta

skogen §7 Karlaplan

WV

R \stedshagen o
&

£ Gstermaimstorg

&
&

Kungstradgarden

¢ viroy gi
Vérby gind Frudngen

§7 Masmo

¢ Hallunda

Norsborg

Vertices = metro stations
Edges = direct connections between stations

Source https://tunnelbanakarta.se/

Social Networks

Vertices = user accounts
Edges = two accounts are "friends"

Source: http://blog.revolutionanalytics.com

117


https://scholarlycommons.pacific.edu/euler-works/
https://tunnelbanakarta.se/
http://blog.revolutionanalytics.com/2010/12/facebooks-social-network-graph.html

Graph of Protein-Interactions (yeast)

log(P)-+iclk,.

Parcentage of essential proteins g

L
o] 5 10 15 20
Mo, of links

Vertices = proteins
Edges = two proteins interact

Source https://www.nature.com/

Chemistry and Molecules
0 CH,
HC /
3 \N N
N,
0 T N
CH

3

08 H10N4 02 = caffeine

Vertices = atoms Source https://stock.adobe.com/
Edges = chemical bonds

Any idea what this molecule is?

(Hint: makes you awake and can be transformed by mathematicians into theorems)

118


https://www.nature.com/articles/35075138
https://stock.adobe.com/se/images/caffeine-molecule-structural-chemical-formula-and-molecule-model/231557374

Phylogenetics Trees

PHYLOGENETIC TREE

( ) SRS ]

A
M Poives %} . Slime Molds 5;-\\5? Q?

Spirochaetae

Proteobacteria

Thermoproteus

Ciliates &:}

Pyrodicticum )

Green Filamentous Microsporidia O

% Bacteria

Aquifex

4

Vertices = Taxa (e.g. genes or species)
Edges = ancestor relationship

Source: https://www.azolifesciences.com/

Graphs can be used to model various types of real-world scenarios.

Given such a graph, it is therefore of interest, to understand its structure (what does structure mean?).

—> we need algorithms to analyze them.

Here, we focus on simple structural properties and basic algorithms to compute them.
To recall:

A tuple (V, E) is called an undirected graph if

e V is a finite set, and

e F is a set of unordered pairs of elements in V.

V is called the vertex set, and the elements of V are called vertices (often also nodes).
FE is called the edge set, and the elements of E are called edges.

For now, we consider undirected graphs only and call them just graphs
Example. V ={1,2,3,4,5}

E={{1,2},{1,3},{2,3},{2,4},{2,5}, {3,4},{3,5}, {4,5}}

The neighborhood N(v) of v in G = (V, E) is the set N(v) = {w € V | {v,w} € E} of all vertices w of G such
that {v,w} form an edge in G. If v € N(v) (and thus, v € N(u)), then u and v are called neighbors.

119


https://www.azolifesciences.com/article/What-is-Molecular-Phylogenetics.aspx

Handshake-lemma.) . |N(v)| = 2|E| for every graph G = (V, E).

Proof: Each edge {u,w} connects exactly the two vertices u and w and so it contributes 1 to |N(u)| and 1 to

|N(w)|. Thus, each edge contributes 2 to ) .\, |N(v)|. Hence, }° .y |N(v)| is equal to twice the number of
edges. O

Let G = (V,E) and G’ = (V', E’) be graphs. Then,
e (& is called a subgraph of G if V' CV and E’' C E.

e (& is called a spanning subgraph of G if G’ is a subgraph of G with V' =V

(G’ contains the same vertices as G).

a spanning subgraph

A graph G is connected if for any two vertices x,y € V(G) there is an zy-path.
A connected and acyclic graph is a tree (see previous lectures for further defs).

Lemma. If T = (V, E) is a tree, then (V, E \ e) is disconnected for all e € E.

Proof: Let T = (V, E) be a tree. By definition, T is connected.
= for all u,v € V there is a uv-path in T'.
In particular, there cannot be two uwv-paths in T since, otherwise, we can find simple cycles.
= For all u,v € V there is a unique uv-path in T
= For e = {u,v} € E, the unique wv-path in T is precisely the edge {u,v}.

= (V, E'\ e) does not contain a uv-path and is, therefore, not connected.

120



Tree-Theorem. T = (V, E) is a tree if and only if T is connected and |E| = |V| — 1.

Proof: only-if-direction: Let T be a tree. By definition 7" is connected.
We show |E| = |V| — 1 by induction on |V].
Base case: A tree with one vertex has no edges = |[V|—-1=0= |E|

A tree with two vertices contains exactly one edge edge = |V| —1=1 = |E]|
Ind.-Hyp.: Assume that statement is true for all trees with < k vertices, k > 2

Let T = (V, E) be a tree with |V| = k, k > 2. At least one edge e € FE must exist, else 7" would be disconnected.
By the previous lemma, 7" = (V, E'\ {e}) is disconnected.

In particular, e “links” two subgraphs in 7" and these two subgraphs must be connected, i.e., T’ consists of
exactly two connected subgraphs Ty = (V, E1) and T = (Va, E).

Since we have not added edges, 71 and T5 are acyclic and, therefore, trees.

By Ind.-Hyp. |Ei|=|Vi|—1and |Fs| = [15] — 1.

Note that |V| = |Vi| + |V2| and |E| = |E| + |Es| + 1.

Hence, |E| = |By| + ] + 1= (Vi = 1)+ (Val — 1) + 1 = Vi + Vol = 1 = [V] — 1.
if-direction: Let T = (V, E) be connected and |E| = |V| — 1.

Assume, for contradiction, that T contains simple cycle C' = (vg, v1,. .., Vg, Vo), i.e.,

P = (vg,v1,...,vk) is a simple path of length k > 2 and e = {vg,v9} € E.

Removing e from T results in Ty = (V, E'\ {e}).

Note 73 remains connected but it does not contain the cycle C' anymore. If 77 is a tree, we stop.

If T1 is not a tree, we continue with the latter process by taking the next simple cycle C’ in T3.

remove an edge from C’ to get a connected graph T, that does neither contain C nor C’.
After k steps this process must terminate, i.e., we obtain a tree Ty, = (V, E)

We already proved: |E| = |V| — 1 (only-if-direction).

By assumption, |E| = |V| — 1 and thus, |E| = |E| must hold.

= F = E, i.e., there cannot be simple cycles in T and, since T is connected, it is a tree. O

Graphs can be used to model various types of real-world scenarios.

Given such a graph, it is therefore of interest, to understand its structure (what does structure mean?).

—> we need algorithms to analyze them.

Simple structural properties:

e Is G connected?
e Does G contain simple cycles?
e Is G a tree?

e What is distance between two vertices u, v, i.e., length of shortest (simple) uv-path?

121



How to store graphs
Before we delve into the algorithms, let’s take a closer look at how to store graphs.

Here, we assume that the vertics in G = (V, E) are integers 1,...,|V].

123 45
1 2] P{s5]s 1o 100 1
2 1] 5] 3] HHel/] 2010 1 11
3 2| Pals 3]0 1.0 10
4 2] 5] P33/ 410 11 0 1
5 4] P 2]/ S5/t 1010

G adjacency-list adjacency matrix

There are two common standart ways (among others):
» The adjacency-list of a graph G = (V, E) ..

. consists of an array A of |V| linked lists, one for each vertex j in V' and

each list A[j] contains all vertices ¢ € N(j), i.e., those ¢ for which {i,j} € E.

Usually used when graph is sparse, i.e., |E| is much less than [V?|.

» The adjacency matrix of a graph G = (V, E) is a Boolean |V| x |V|-matrix A = (a;;) with

1 falls{i,j} € B
% =90 sonst

Usually used when graph is dense, i.e., |E| >~ |[V?| or if we want to remove/insert edges in O(1) time.

For the simple graph properties we want to test as listed above we can use graph traversal, that is:
e visit the vertices in a graph beginning with a start vertex s such that

— Each vertex reachable from s is visited exactly once.

— The next visited vertex always has at least one neighbor in the set of previously visited nodes.

We consider here two classical graph traversal algorithms:

e Breadth-First Search (BFS)
e Depth-First Search (DFS)

5.2 Breadth-First Search (BFS)

BFS(G = (V, E), s)

1 visited(v):=false for all v € V' //to keep track of visited nodes

2 init empty queue @ //FIFO

3 visited(s):=true

4 @Q.enqueue(s)

5 WHILE (Q # () DO

6 wv:=Q.front() and @ .dequeue()

7 FOR (all neighbors w € N(v) of v for which visited(w)=false) DO
8 Q@ . enqueue (w)

9 visited(w):=true

122



Example.
g — *

L N N LA

visited visited visited

s — ’7'—9

NG\ \//\ \//\

visited visited visited

after L1-4: Q = (1) visited(l):=true

L6 (BFS-order) L8 L9

v=1and @ = () Q=1(2,3) visited(2) = visited(3) =true
v=2and @=03) Q=(3,4) visited(4) =true

v=3and Q=(4) - -

v=4and Q= () Q= (5) visited(5) =true

v=>5and @ = () - -

Lemma. BFS(G = (V,E),s) can be implemented to run in O(|V|+ |E|) time for every graph G = (V, E).

Proof: Assume that G is stored as adjacency-list (for all v the set of neighbors N (v) is available)
L1: O(|V]) time // L2-4: O(|1|) time
while-loop

e Only non-visited are added to queue and then marked as visited

= each v € V is enqueued at most once, and hence dequeued at most once.

e The operations of enqueuing and dequeuing take O(1) time, and so the total time devoted to queue
operations is O(|V]).

e The neighbors in N(v) of each vertex v are scanned only when the vertex is dequeued

= the neighbors in each N(v) are scanned at most once
e The handshake-lemma implies ) ., |N(v)| = 2|E| € O(|E|).
e —> while-loop runs in O(|V| + |E|) time.
BFS runtime: O(|V| + |E|). O

5.2.1 Is G=(V,E) connected?

Now, lets squeeze out all structural properties of a graph G we may get using BFS.

In what follows, we say that v is marked as visited, precisely if visited(v) =true
Structural Property: Is G = (V, E) connected?
Lemma. All vertices in V' are marked as visited after run of BFS(G,s) < G is connected

Proof: "<=" Suppose that G is connected. Thus, there is an sz-path P in G for all x € V.

Assume, for contradiction, that « € V' is not marked as visited after run of BFS(G, s).

123



Since s is marked as visited, but « is not, there are consecutive vertices v,w in P = (s,...,v,w,...x)

such that v is marked as visited, but w is not.
In particular, {v,w} € E and, therefore w € N(v).

= At some step of BFS(G, s), the vertex v was enqueued to @ (directly before/after v was marked as
visited).

= At some step of BFS(G, s), the vertex v is dequeued from @ and the for-loop is entered.

As w is a non-visited neighbor of v, it will be considered during the run of the for-loop for v

and is thus, marked as visited; a contradiction 4.

Since the latter holds for all z € V', all x € V' are marked as visited.

"=" Assume that all vertices in V are marked as visited after run of BFS(G, s).

If V = {s}, then G is connected. Assume that |V| > 1 and let w € V'\ {s}.

Since w is marked as visited, we have w € N(v;) whereby v; € Q prior to point where w is considered
in for-loop

Since v1 was added to @, it holds that either
v1 = s (in which case we found an sw-path P = (s,w)) or

v1 € N(vy) whereby vy € @ prior to point where v; is considered in for-loop

Repeating the latter, ends in a sequence of vertices vg, ..., v1,v9 with s = vy and w = vy and such that

v; € N(vi4+1), 0 <i <k — 1 and thus, we obtain an sw-path P = (vg,...,vp).

= for all w € V there is an sw-path
= For all x,y € V there is an sz-path and sy-path and combining these two paths yields an xy-path

= (G is connected. O

Thus, we obtain

Lemma. Testing whether a graph G = (V, F) is connected can be done O(|V| + |E|) time.

5.2.2 Is G=(V,E) a tree?

Structural Property: Is G = (V, E) a tree?
Since we can test connectedness of G = (V, E) in O(|V| + |E|) time, we obtain

Lemma. Testing whether a graph G = (V, E) is a tree can be done O(|V| + |E|) time.

Proof. First test if G is connected in O(|V| + |E|) time. Then, check if |E| = |V| — 1. In the affirmative case,
the Tree-Theorem implies that G is a tree. O

124



5.2.3 Finding spanning trees

Find spanning tree of G (if there is one).

In many applications we are also interested in subgraphs of G that are trees, in particular, spanning trees.

To obtain spanning trees, let us slightly modify BFS by marking also edges as visited.

modi_BFS(G = (V, E), s)

1 visited(v):=false for all v € V and visited(e):=false for all e € F
2 init empty queue Q //FIFO

3 visited(s):=true

4 @ .enqueue(s)

5 WHILE (Q # 0) DO

6 v:=Q.front() and @Q.dequeue()

7 FOR (all neighbors w € N(v) of v for which visited(w)=false) DO

8 Q@ . enqueue (w)

9 visited(w):=true

10 visited({v,w}):=true
Example.

visited

B
§= 4 // Lf
3
Given the same order in which vertices are added to @ as in previous slides: 1,2,3,4,5

visited edges: {1,2} {1,3},{2,4}, {4,5}.

In this example, we obtain a spanning tree (called BFS-tree).

Let Tgrs = (V,F) be the graph with vertex set V' and F being the set of all visited edges after run of
modi_BFS.

Lemma. If G = (V, E) is connected, then Tgrs = (V, F) is a spanning tree of G

Proof: We show that Tppg is connected and has [V| — 1 edges.

Since G is connected, we can apply the same arguments as in the proof of the "="-direction of the lemma "All
vertices marked as visited iff G connected", to conclude that, for all w € V', there is sw-path along visited
vertices that consists of visited edges only. Hence, Trprg is connected.

Since G is connected, the latter lemma also implies that all vertices are marked as visited. In particular, all
|[V| — 1 vertices distinct from s must have been marked during the execution of the for-loop and each vertex is
marked visited precisely once. Hence, F' contains precisely |V| — 1 edges.

Thus, Tgrs is connected and has |V| — 1 edges and the Tree-Theorem implies that Tgprg is a tree.

Since the vertex set of Tgrg and G is V, Tgrg is a spanning tree of G O

Corollary. G = (V, E) is a tree if and only if G is connected and |F| = |E|

Proof: If G = (V, E) is a tree, then G is connected and there is only one spanning tree and thus, G = Tgrg
(hence, |E| = |F|)

125



Suppose that G is connected and |F| = |E|. Since F' is edge set of the spanning tree Tprg of G it holds that
|F| = |V| -1 and thus, |E| = |[V| — 1. By the Tree-Threorem, G is a tree. O

Let Tprs = (V,F) be the graph with vertex set V and F being the set of all visited edges after run of
modi_BFS.

Summary so-far: For a given graph G = (V, E), BFS and its modification allows us to determine in O(|V|+ |E|)
time . ..

o ...if G is connected (all vertices in V' are marked as visited)

e ...if G is a tree. (Check first connectedness and then count number f of visited edges and compare f
and |E|)

e ...a spanning tree Tprs = (V, F) of G in case G is connected.

The latter results also imply

Theorem. For each connected graph G = (V, E) we have |E| > |V| —1 and G has a spanning tree.

5.2.4 Determine distances in ¢

Structural Property: Distances in G = (V, E)?

dist_BFS(G = (V, E), s)

1 visited(v):=false and v.d := oo for all v € V

2 init empty queue ) //FIFO

3 visited(s):=true and s.d :=0

4 @ .enqueue(s)

5 WHILE (Q # 0) DO

6 v:=Q.front() and @Q.dequeue()

7 FOR (all neighbors w € N(v) of v for which visited(w)=false) DO
8 w.d=v.d+1

9 Q@ . enqueue (w)

10 visited(w):=true

¢:] — * =1

N\, L= A

visited o visited [ visited
v.d v.d

2.ol=4.Ae1=1 ¢l 1 Yded.ded
0 oo 0 2 o . 4 0 2 =2

o — ;@ 4

N4\ L

o visited 3 34 (visited
v.d v.d v.d

126



5
w 2

— 0 o' @— p’
N N
v.d

visited 1 visited
v.d

Example. Given the same order in which vertices are added to @ as in previous slides: 1,2,3,4,5 What have
we computed? Answer: d(s,v) for all v € V. Let’s prove correctness!

In many application it is useful to know the distances d(z,y) between vertices x and y in G, where

minpep |P| if set P of all zy-paths is not empty
00 else

d(z,y) = {

Here | P| := k denotes the length of a path P = (vg, v1,...,vk).
In other words d(z,y) denotes the length of a shortest xy-path in G. If no such path exists, then d(x,y) = co.
To this end, consider the modification dist_BFS.

Theorem. dist_BFS(G,s) correctly computes the distances d(s,v) between s and allv € V in O(|V| + |E|) time.

proof board

127



oné_ RFES

Lqg. et G=E) & apyl & V.
T heen o//;,\/)é dlc,u) +1 ¥ {uvieE.

B..wovl; /‘/ V  ne ;.,./»4( = po VU ful{ => o{{(,/)'—‘é{/.('uj

W(_ Wu
v

S
Sb‘o-‘tbll' Sq OD&L( MV"GM'L\A 7z = DI[SUJ :p{(.{'l/)"'L

(eae 2 Jﬂwﬁaf N /;a,t( e ot ot Quin V
&/\—/ou_/ou
= dliv) ¢ dlse)y+1 /D




L2 (A G=(LE) Lo a gogt.
Thew ‘fw at ueV Ju volew y.d = (¢ u)

ot ol g 9{ oliak BFS (6, <)
En:w&[. s mehon]

Puﬂﬂ’/ éﬁ /\:hDé"‘f/A.o"‘ L& # ‘6‘4711\0-64-7-\4/&6)9“2

ﬂm cowt Wj g,gy\’.,.l,-?o (ZL/)' S_d:d:.a{(S'S)
£ q.ﬂ{'-'oozo((gu)\/

Assee  cledecad e ofly Uk A tutire -—c%’wc-l-mu.l.

/(/O‘J/ 014\4. w1 M?uw.-w/o Febus //Lovov_
T 'F?pQ—Loop fc»/ 0w We Nlv) ) &.wﬁwﬁg(w)

Bfore Qeaguas(s) i yols d (cuflu by ansl bop

'TA»W m L€ wd= vd+d = JLS-V\"’iZ d{(sw)
€ nce {‘/IW)
539"”/-67/4" f;d?(. A Ly L.1

Sava oh oMwr ud weon nueflectd & oo 2 d(cn)
=> AFrek 04‘»7%&) (= ut? enguew «?9)
V uelV: wd>2 dlc,u)

.(,},,u_ sad o A4 At n 4%7.,.4,@( oo

ntL yo '5"‘71/#—01 0.(7(14,34 (_(,L.u Wc.févc‘.d/ @

b»ful{a/)
=5 [/W u.od racil WvLﬁf(-’{ 4—”7
[ M7M o1& =) /{j




L. 3 Jmpﬂocc 00{/1./1."\7 ez ,,7 obtd. BES
o Gotugy [ e g @ (Ve vr)

r
N F"r_{"’ Laﬂt
e, & %)
“) Veedl € vaod +4 & v d ev;ﬂ.o{) q2c (-
(42 (R

/\/\Tﬁ
[/h#,,.,},bmf mvz.d4 ..... e\rr,olé—.\ﬁal-(—i
Afst - vedunea xt{a»ﬂ ve/hen o &wq,am/w
W(/ovw- e it (k, ..k, <1.. k+1)

ﬂﬁm Lo ,,;7_&94/ k=0

,{M‘)MM <

e[ ¢ Now, 2rolucho- oveo 7"'0/006-'4’”"‘ on & [—r olegim )

Zas—e@"t."#‘af ou A= 4 = R=(c) i LY Stelent Aawdé%
PQ'M Ca (Q (,pc.ﬁculu dh[i
7 bt .

A’&Sm«f/)vu! ot tnd pae % #0f oull = K.

W1 0(). cen  lae ab-ﬁmc o W7M

\(hlﬂ{l@?f, fytrc{- I+1 % ov @ = (Vq--- Ve) s 0(/1.714.(.0-4.

/"'ﬂ/h;f" (i) Vel & Vyd+4 &L #
(i) V. d 2y, . d e %

——)p.%hf ”‘U?'MJM-: @: [,/2..../.,-) Nﬁ=¢,]r=1
Covmb stoows 4)4a) leolds fov s B3) 40 poaslly foe

¥
é; Ve e undsl £ "2_0(“"1- = (<) Yy 2 v.d =+

4 (ad) holde for alt
= <) si) Selufel for . 24isc




4/0:/\/ o e K4 :.9/:- o & = (Vq---V—,«) ¢ 60»7,4,«1; /L. %J

[’Maﬁr @.Lmywwa('W) = A - (Voo Vo W)
/
Cbt—wv\" ntous <) 4:"1) Loldy /;\ \lbl,] QJ

;0[ & =( ) #/Wﬁ e LY 4‘£ 74) B l«s[o/
7 / 2k &v”fy(w>

/4’IAM r= i—

2-&]5)&. FeR -lop whee W (<8 w?w
volex v oon  oguad Lve M) u L6
,)a.[,e,/ln'r.w(wp et VvV owen M} . = 9t
& inlb  dugpened ohrotty Lefar Fol-lwop e wWEM

< fabn.
Zb][m v 0&7WM{ a
q - (V) Xy )
s v Aéw,wd : La/;{;,ﬂ: y.;IL;x4.A 2 -.é.x:::/ié\l.ohq_@
&V= (xeoxer )
o W .

V't Vg Vea Ve

) a ...
Q= ( Xq .- kr‘le el W )

by comstrnon (@)
w.ol = vd+1 ,
< X +1 =D 1) holds fos &,




-1 :

V,r-\ V(,'*)]... Ve V~r

Va ...
(9\ = ( Xq S T )z ‘---,IIW ) Line 8

=

&

vdexde - exadevder
qu VT‘.D!

= i) &g@g(ﬂ@, Q. /
W




CoRA : [r vl ew7wwl beforc v eujw—" e ADHRFS |
HeEN vd £ v\ d O oﬂU

Tho: didt &FS (6,<) mwfﬂfw ot oliot d(5u)
C@—nrao/('@ V/N all Vek{(@}: v.dl = offc,u)
o.,/}v ,law,‘mah\ah.

proof -

('5’7} wu/mo(n'oﬁ"”" ; oSt l/-ﬂ’{ =+ o((c,u)_

Choose v oumo ol vellicn v Al l/'-a/( #—a((((/') P
) PL‘“’ ot (f&l bk d[_(‘l/) C mndnrnm | j

Lowne 2 + vl £d (cv) 7%/9“05 : V~0( > A (< v)

Nete vas ) i .S'-o(’ '0((-(;()= 0] CDYWJ(L?)

Moviovu ot must Le an ,Sv—fc.n['f i 67/

o Mww i o0=0l(c.v)z v d ( cownbrecd ek
ool > dlgv))

lef P Lo Sone Shortest .Slf—/oa—l—( (s...uv)
/5'.“‘-(’ S#V) u 21017{5 wlae u=s /Josglbll) dﬂ‘

<
'N’_av
=2 dey) = dlsu) + L

,2,,7 0(.01'62 49(7 v (W,’L, D{I'T?l @) => L/(.O{ fO( [glu)

L0
= d> dlev) = dlsw)+4 sud+1




Now coungsoy Gt whia  GIRES closec
/[
/C(-': @MW 74
w bl Wu;FW/WM u.B’/ém
v i< M-’LL"U 112 kol r ot ol M [,),yfw‘t
17 v 3 we V?Y;Lca{ = Ve'/\j(l/lJ X %&wo/b L-?)

/'w./o Les i owill lee cousudd

A v.d = M-0(+ié

CO o INedbhve fp

|F v W}’Z(ol =) Yl A wen 0/71/\/4/
Ao & ot gowe{;,n/»% (9 +10)

P /F v wen e%?./wo( é.eiwe_ b Len M%M

Zcorar  vd cud G gemtecliths o bo

v (F v wea L"‘*’7W‘a‘é O_?/LLE/ b won 01/7(,\;/0[
= v enN) ) s, U sngud befRre w
s vid=uld +4a
= (oR 4 : u'sl < u.d = vd =2u.d +4 4

CO L.




= v.a/l‘—:a((s,u} 4(7[(/6\/
f%-) ads /TM/W‘M &d%%fﬂvaléy /ané

oll vedacr el otle O((gw.. 1 o€
Vi'ls ftol - pflueviet Vo = oo >0((£V)

wrovld hold ]
/7




We could run dist_BFS(G,w) for each w € V as start vertex and thus, obtain the distances d(w,v) for all
w,v € V, which implies

Lemma. The distances between all pairs of vertices in G = (V, E) can be computed O(|V|(|V|+|E|)) = O(|V|*+
[VIIE|)) time.

There are many other algorithms that can be used to determine distances that even work in the case that we
may have edge weights (here dist_BFS would fail in general).

136



5.3 Depth-First Search (DFS)

DFS(G = (V,E),s)
1 visited(v):=false forallv eV
2 init empty stack S //LIFO
3 S.push(s)
4 WHILE (S # 0) DO
v:=S.top() and S.pop()
IF (visited(v)#true) THEN

)
6
7 visited(v):=true
8

FOR (all neighbors w € N(v) of v for which visited(w)=false) DO

9 S'.push (w)

1 L—4 1 L—4 1 2 —y4
SN TN
3 3 3

visiteol

visiteel visiteol

O— 00— 90=00_O=g
"N TNE TN
3 3 3

visiteel visiéeel visiteel
after L1-4: § = (1)
L5 L7 (DFS-order) L9
v=1and S =) visited(l) =true S =1(2,3)
v=3and S =(2) visited(3) =true S =(2,4,2)
v=2and S =(2,4) visited(2) =true S =(2,4,4)
v=4and §=(2,4) visited(4) =true S =(2,4,5)
v=>5and S =(2,4) visited(5) =true -
v=4and S =(2) - -
v=2and S = () - -

DFS plays a particular role when considering directed graphs.

Both BFS and DFS graph traversal algorithms, that is:

e they visit the vertices in a graph beginning with a start vertex s such that

— Each vertex reachable from s is visited exactly once.

— The next visited vertex always has at least one neighbor in the set of previously visited nodes.

BFS goes first into "breadth" while DFS goes first in "depth".

137



1o am 1%+

Poss{bbz 2ES oS DFESC oros

Neither the BFS- nor DFS-order is unique (e.g., we could have visited first 4 and then 3 in both trees)

5.4 Kruskal Algorithm and Minimum Spanning Trees

In many cases, we are interested in weighted graphs and minimum spanning trees.

Let (V, E) be a graph and w: E — R.

e The triple G = (V, E,w) is called a weighted (or edge-weighted) graph.

e w(e) is called the weight (or length) of edge e € E.

Given: Weighted connected graph G = (V, E, w).
Find: A minimum spanning tree (MST), i.e., a spanning tree T = (V, F') with
minimum total edge weight. That is, choose the set of edges F' C E such that

ZEEF w(e)

is minimized.

Example

Consider a scenario where a company needs to connect several buildings on its campus using cables or fiber
optics. Each building is represented as a vertex, and the distances between the buildings are represented as
edges with weights (the cost of laying cables/fiber).

In this scenario, we want to connect all the buildings with the minimum cost possible. This is where an MST
becomes useful which will give us the subset of edges that form a tree connecting all the nodes with the minimum
total edge weight.

Question: Does BFS still work?

Answer:  No, take graph on 3 vertices s,u,v and weights w({s,v}) = w({s,u}) =2
and w({u,v}) = 1.

138



= we need a different approach.
Many optimization problems are rather difficult to solve (keyword: NP-hard).

However, somewhat surprisingly the MST problem can be solved in polynomial time with a simple greedy
algorithm.

Question: What is a greedy algorithm?

Answer: A greedy algorithm is an algorithm that always makes the choice that looks best
at the moment. That is, it makes a locally optimal choice in the hope that this choice
will lead to a globally optimal solution.

How does a greedy algorithm for finding an MST look like?

Kruskal(G = (V, E,w),w: E - R) //m = |E|
1 Sort edges such that w(e;) < w(ws) -+ < w(em)
2 F=0,T:=(V,F)
3 FORi=1,...,m DO
3 IF (V,F U {e;}) is acyclic
& F=FU/{e}

3 return T

Kruskal’s algorithm finds the minimum spanning tree as follows: It starts by sorting edges by weight, then adds
them one by one from lightest to heaviest while ensuring that the "intermediate" graph 7" remains a forest,
until all vertices have been checked and when possible added to T

F = {{A,C},{D,E},{B,DL{A,D}}

Theorem. Kruskal correctly computes an MST for a given undirected, connected graph G = (V, E) in O(|E||V)
time.

Proof Board.

139



WRWS LA

77)(0/4(/"‘ . WUrws km(—'$ D(ﬂaf‘—ww w/rﬁo#(z“?

(‘,om,?o\,l—M o MST fov aa",,(_h wwatﬁrl_c/’.-cal
e G M OCIVIEY) Hwe
€’ g : lEN )= O(E) tog W)  siwee [Ele IVIZ
@ Rusrive sort edou O (IEl Loy ¢ z
(’:,,;.T; FT-=-¢ 4 o(A) - oy ¢ Log (VI )= 2 log Cvr)
T=(vF) - oC\v))

For (oop o 60s Fle f-"’L SLLP, Whl-h (70“ Chd{ 17/ (\/I Fviuy}):‘l\
23 Acyc&‘c
g{'ﬁ"‘é EFS(T‘) V) =) _fﬂ“-s vn  ale ol vty
v/‘t.o-.l Groe readsble ﬂam v

—.—)(7/%«) (7,,,\ spelberans
Sabgeopl fof b fhot

Contaras v A p.uy new
Chele ik in A (fteare il any)

H oo at moct 22 vethws L < cp{744
= BFS (7 v) v oK sAgp rons v

0({."‘25)“0(. <
Totoel © D11V &) £ Olm) b

e

. o O &4_& IN—(/\
wi ke effiet et o 0 (1€ LogV))

H/\A'K Lo bt (L ,[3-\/,_7\/1_(}1

) Co./rcdrw—%@ 2
p Lo

1) A-Iﬂ  berpmnetes v

2) .—ow»llq’hﬁ 3n.,(abn T .
[ QPo\y‘.mn‘M:,_

Covdenivs s acyelie
-{D—V‘cy'— o# 67

A vey= Vle)




2) T oo comw‘-e/l"’—“"" (,7,,.(94' => gi(-qe\llT\ A+ no ’('U')P"“‘HA
exceks  w T

b ¢ CoMMUL‘J = 3 x-9- P“‘{"" v b
=> X-y- P"’H" ¢ ) ’/\/9_3-6\/_/‘-7’_ e &

Lo(n(gL on € a+ Cé(: : r

ot come othcdep o} FoP-leop edoe € ¢ o e alared .

[%Ul-\' T‘: C\/I =2V '\0'33 FLwlrn S a,uagln'c (owwl'ib /,(,.,L-ft

(ot skep @) onld hove loten

6 -y —r}&w 0~L~rr-0—4l-9
ve T I8 —H/Lu.l. f"‘—r)

=> & s o\o(aLLU( +o T ot L‘«.Pz
é ed &

=) T re sponniug 711-(/1. e,[ 6.

4'0 & Low ‘Hﬁki T e w g(’o\lflv\-t-hb ‘J‘C‘ 94 6—,

e GvS
e+ 'FL Le He sed @.[v Lolﬂux -{ofuwt-c" wpe e clep

Clace: 3 per TF of 6 e % ® EC(T*) Yelepe =t ™

(=0 = CV.@’) v

)
clevne 13 e §°.r all SLcFS fel

kvd n \0 A SSume

(et T e M6T of § h Ey € (T )

Now * (= le«l . D‘”J Lkt e- (wv) be Hae C,u.lfcw" ('Dl%l
Cous.'dﬂbo‘- ‘n Cle = <l ie
e [F e wnol added to .

THE N Feag = Fe € ECTA) VY

cF e a doled o tu
THe N Fred = Fu o LLL]
L (F ece E(-\—)ﬁ—) o Fu«a < = L.rl_) J

ELSE <4 E (TT) IS H,\u’u{od’c.) (\/, e *(o u\t.'))
Nnantt couwtacn a g,h—-/lllc‘70£‘

/ £

S/hu Vw31 -
Mot fu TT D ﬁjs) t e {ofm; U/o&—

el =
a&/‘«l"/ Sne ez <=9uvi




éflualw'wm % A

T "
2 =(uv) A’/W\\/ﬂl

S'Ma L2 S Cotn L&u'l«,d Jan Tl “l lern ¥

e Ldﬁ& { 0\; Comnot be contoined in!

oHuwite T couteins G\gd(.

=7/ 4 FeeEO
NOM [} (f,: = ‘T#' { t &’I IEs qga«u‘m e f"/’fl (\'CWCII)(,\

Mocovr, w(f) > wile) [ obwwne f wiBewle) ftun
i ‘{(f‘-bdto—o(am'u wounld be

¢ L wok e In QLLP 1:..&4»4_]

=5 W(”T’\éud('[‘*)

~ X _
L ope THig (g = w2z w™) =

w lT) = w (T*)

= 7(: 1 kgt Freot woudens 11"“- «'_cl%yw e toch_.

]ﬂ-#(/ ar&uw.—#; .
. N
od Tan codormed iw KT =

A/DW M[y,o‘.-l 1”“
o o]l edge




Chapter 6

Questions and Answers

6.1 Questions from students

What do I need to know and learn to pass the course? See slides 0-Orgastuff.pdf for the hard-coded
details. Moreover, if you can follow the content of the course (i.e., you understand the slides as well as all the
proofs) and if you are able to solve the exercises below then you are possibly well-prepared for the exam. Exam
questions will be "similar in flavor" to those exercises [not identical of course!]. Moreover, for the exam I give
from time to time some hints within in the lecture, to give you an idea of what is expected.

What means "understanding something"? Understanding something typically refers to the ability to
comprehend, grasp, or make sense of a particular concept and idea,. It involves more than just knowing facts!
However, it is hard to define. Take the term "understand" as something like "I am able to explain it to some
other students". By way of example: Are you able to explain when an algorithm is said to solve a problem?
Can you prove that n? € O(n?.5) and explain it to some other student? Do you know what it means to change
the base of a logarithm? Can you prove the correctness of insertion-sort and explain this proof to some other
student? A good practice here is to explain the content and to discuss it with other students. Judging if you
understood the content is completely up to you: The teacher can explain it to you but not understand it for
you!

What if I dont understand certain parts of the content? If you cannot follow the content of the course,
then be self-organized based on my hints on the course page. Hints which chapters you can read are given at
the kurser homepage: explicit for each lecture. Discuss the content with other students. Go to the tutorials
and ask the TAs to recap some parts of the lectures.

How can I deepen my knowledge? If you want to deepen your knowledge, be self-organized based on my
hints on the course page. Hints which chapters you can read are given at the kurser homepage. Moreover, feel
free to attack additional problems stated in the course book w.r.t. each of the sessions.

What is the difference between the courses DA4005 and DA4006?7 DA4006 is a foundational course
concerned with fundamental content aimed at understanding how algorithms work, their applications, methods
to prove their correctness, and analyzing their time and space complexity. While we primarily cover problems
that can be solved by algorithms in polynomial time in DA4006, the course DA4005 also delves into the
complexity of algorithms for problems that may not necessarily be solved in polynomial time. This includes an
exploration of NP-completeness, as well as heuristics to solve such problems.

How are the "laboration"-sessions structured? The "laboration"-sessions are structured based on the
current topics being discussed and the individual tutor’s approach. They typically involve a combination of
individual work by students during the sessions, supplemented with additional examples, explanations, and
theory provided by the tutor. Practical aspects, like implementing algorithms and data structures in different
programming languages, may also be covered. Furthermore, these sessions offer opportunities for students to
ask questions and receive assistance when facing challenges with exercises.

143



What are "bonus exercises" in the Exercises (Home Assignments "LABO") Bonus exercises can be
used to earn extra points. While all "non-bonus" exercises are mandatory, the "bonus" exercises are voluntary.
The total points you can earn by completing the exercises are based on the non-bonus exercises. Therefore,
completing the additional bonus exercises gives you the opportunity to receive more than 100% of the points.
Note that there are no second submissions allowed, so you may use bonus exercises to also achieve the minimum
passing grade of 50% for the LABO part.

6.2 The exam structure and exam problems

THE FOLLOWING PROBLEMS SERVE JUST AS AN IDEA FOR POTENTIAL EXAM QUESTIONS.

EXAMPLES ARE IN MANY CASE IN EXTREM SIMPLIFIED FORM TO GIVE YOU AN IDEA AND HE EXAM PROBLEMS
CAN BE EXPECTED TO BE MORE DIFFICULT

ADDITIONAL EXAM QUESTION NOT PROVIDED HERE MIGHT BE ASKED.

Problem (Basic Questions)

» A couple of basic questions will be asked.

Example (EXAMPLES MIGHT BE PROVIDED IN A VERY SIMPLIFIED FORM TO GIVE YOU AN IDEA)

e What is an instance of a problem?
e What is a stack?

e What is a spanning tree of a graph?

Problem (Algorithm Design)

» Here pseudocode for a simple task should be provided and examined on a give example.
Example: (EXAMPLES MIGHT BE PROVIDED IN A VERY SIMPLIFIED FORM TO GIVE YOU AN IDEA)

e Provide pseudocode for an recursive algorithm that takes as input an integer n and that computes the
sum Z?:l. Use only the basic arithmetic operation substraction and addition.

Exemplify how your algorithm works step-by-step by using as input the integer n = 7 and provide the
value of each of your used variables in each step of your executed algorithm.

Problem (O,), and ©-Notation)

» Here you should be able to prove or indicate if for a given function f it holds that f € O(g), f € Q(g) or
f € O(g) (it might be an extra task to determine g).

Example: (EXAMPLES MIGHT BE PROVIDED IN A VERY SIMPLIFIED FORM TO GIVE YOU AN IDEA)
e Prove in detail that T'(n) = (3n + 2)* € O(n*)
e Indicate with yes or no if $2" € O(3n?)

e Determine an asymptotically tight bound g(n) such that f(n) = £2" € ©(g(n)).

Problem (Time and Space Complexity and Master Theorem)

» Here you should be able to determine for a given algorithm its space and time complexity. This might also
include application of the Master Theorem.

Example: (EXAMPLES MIGHT BE PROVIDED IN A VERY SIMPLIFIED FORM TO GIVE YOU AN IDEA)

e Provide the exact bounds for the time complexity T'(n) € ©(..) and space complexity S(n) € O(..) of the
following program Sum(n) in ©-notation, assuming a unit-cost model.

Sum(int n)

144



I total sum =0
2 FOR (i = 1 to n) DO
3 total _sum = total sum +1i
4 PRINT total sum
e Given is the following pseudo-code of a divide-and-conquer approach.

Some_Rec(n)
| IF (n > 1) THEN

2 print("hello")
3 Some_Rec(n/2) + Some_Rec(n/2)

Call Some_Rec(10) and provide the output of the print command in each of the single recursive calls in
the order they appear.

Use the Master Theorem to determine the runtime 7T'(n) of Some_Rec(n), assuming a unit-cost model. In
particular, specify a, b, and d as well as the function f such that T'(n) € ©(f).

e What complexity T'(n) € O(..) would result from the Master theorem for the recurrence equation T'(n) =
2T (n/4) + ©(nt0)?

Problem (Sorting)
» Here you should be able to apply any of the sorting algorithms as provided in the lecture.

Example: (EXAMPLES MIGHT BE PROVIDED IN A VERY SIMPLIFIED FORM TO GIVE YOU AN IDEA)

e Given is the array A = [2,3,1,5,4]. Apply counting_sort as provided in the lecture to sort A. For each
of the steps in counting_sort provide the auxilary array B used to sort B as well as the array C' used to
count the occurences of keys (here k = 5).

Problem (Searching)
» Here you should be able to apply any of the searching algorithms as provided in the lecture.

Example: (EXAMPLES MIGHT BE PROVIDED IN A VERY SIMPLIFIED FORM TO GIVE YOU AN IDEA)

e Given is the array A = [2,3,1,5,4]. Use binary_search as provided in the lecture and provide the search
steps for searching for element 5. Specify for each step, in which part of the array you are searching and
shortly state how this decision has been derived in each step.

Problem (Graphs and Trees)

» Here you should be able to apply any of the results we established for graphs and tree, determine structural
properties provide proofs of certain statements

Example: (EXAMPLES MIGHT BE PROVIDED IN A VERY SIMPLIFIED FORM TO GIVE YOU AN IDEA)

e Given is the following rooted tree T

Specify the height of T and if T is nearly complete.

Write the keys in the order they are visited in T using post-order traversal

e Prove in detail the handshake-lemma.

145



Problem (Binary Search Trees / AVL trees / Red-Black Trees)

» Here you should be able to apply any of the results we established for binary search trees (including their
subclasses)

Example: (EXAMPLES MIGHT BE PROVIDED IN A VERY SIMPLIFIED FORM TO GIVE YOU AN IDEA)

e For the given sequence of integers 1, 3, 2 build the binary search tree, that is, insert the integers one after
another as keys into an initially empty binary tree and draw the tree after each insertion.

e Given is the AVL tree T

Insert 5 into the tree T and draw the resulting tree “I" + 5” including the balance factors next to each
vertex. Specify the rotation(s) for rebalancing and draw the resulting tree after rebalancing it.

Problem (Hashing)

» Here you should be able to apply any of the results we established in the section hashing (e.g. chaining,
probing, bloom filters)

Example: (EXAMPLES MIGHT BE PROVIDED IN A VERY SIMPLIFIED FORM TO GIVE YOU AN IDEA)

e Given is a hash table H of size m = 17.

Insert the keys 16,17 in this order into the initially empty hash table H using the hash function h(k) =
k mod m.

Problem (Elementary Graph Algorithms)

» Here you should be able to apply any of the results we established in the section Elementary Graph Algorithms
(e.g. BFS, DFS, Kruskal)

Example: (EXAMPLES MIGHT BE PROVIDED IN A VERY SIMPLIFIED FORM TO GIVE YOU AN IDEA)

e Given is the following undirected weighted graph G.

Use BFS(1) and provide the order in which the vertices are visited (if several choices are possible prioritize
the vertices from small to large). How many spanning tree does G have? How many of them are minimum
spanning trees?

146



	Organisational Matters
	Fundamentals
	What is an algorithm?
	Correctness of algorithms
	Runtime of algorithms
	Elementary Data Structures
	The idea of memory allocation
	Array
	Linked Lists
	Queues and Stacks
	Trees


	Sorting
	Insertion-Sort (Revisited)
	Merge-Sort
	Heaps and Heap-Sort
	Quick-Sort
	Lower bound for "comparison sort"
	Counting-Sort
	Summary

	Searching and Search Trees
	Searching in Arrays
	Linear Search
	Binary Search
	Jump Search
	Exponential Search

	Search Trees
	Binary Search Trees
	AVL Trees
	Red-Black Trees
	Summary 


	Hashing
	The Idea and Notation
	Types and choice of hash functions
	Direct Addressing
	"Non-Direct" Addressing

	Collisions
	Resolving collision
	Resolving collision via chaining
	Resolving collision via open addressing
	Resolving collision: summary

	Factors Affecting Hash Function Performance
	An application of Hashing: Bloom Filters

	Elementary Graph Algorithms
	Intro and Basics
	Breadth-First Search (BFS)
	Is G=(V,E) connected?
	Is G=(V,E) a tree?
	Finding spanning trees
	Determine distances in G

	Depth-First Search (DFS)
	Kruskal Algorithm and Minimum Spanning Trees

	Questions and Answers
	Questions from students
	The exam structure and exam problems


