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Time complexity
Runtime of an algorithm

Naive idea: measure the time from start to end in (mili)seconds

say we want to know for some input N how fast the algorithm is:

N = 4000 and runtime 6.3 seconds
N = 8000 and runtime 51.1 seconds
N = 16000 and runtime 410.8 seconds

Hypthesis: For arbitrary N runtime is ∼ 10−10N3

not really comparible since this differs by the used computers
=⇒ we need a notation that helps to classify “runtime” that does not depend on the architecture of
a computer

Time complexity

NOT: measure runtime on a specific computer

BUT: determine effort for idealized computer model
(e.g. Random-Access-Maschine (RAM-model))

Need abstract measure for complexity to estimate asymptotic costs that depends on the size
of the input
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Time complexity

Add two numbers

1 1 1 3 7
+ 2 8 3 4
= 1 3 9 7 1
Takes 5 single additions.

Hence, addition needs max{m,n} operations (even a bit more if we consider ”carryover”) for two
numbers having m, resp., n.

However, in the RAM-model (as in real computer) instructions are executed one after another, with
no concurrent operations and if we have an instruction add, then this execution is counted once.

The RAM-model contains instructions commonly found in real computers:

arithmetic (such as add, subtract, multiply, divide, remainder, floor, ceiling),

data movement (load, store, copy), and

control (conditional and unconditional branch, subroutine call and return).

Each such instruction is counted as one time-unit and thus, takes a constant amount of time.

Hence, we essentially count the number of execution of instructions (as the number of operations)
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Time complexity

The runtime of an algorithm with input I is denoted by T(|I|), where |I| is the size of the input and
T(|I|) is the number of operations/instructions used in this algorithm with input I.

Input I = A[n], input size |I|= n

COUNT ZEROS(array a[n])
1: int count = 0
2: for (int i=0; i<n; i++) do
3: if a[i] == 0 then
4: count++

variable declaration (e.g. int i): 2
assignment statement (e.g. i=0): 2

”<”-compare n+1
”==”-compare n
array access n

increment (++) n+n
Σsingle instructions = T(n) = 5n + 5

Still, this is unsatisfying, e.g. if you have T(n) = 5n + 5 vs T ′(n) = 6n (which is faster?)

For n = 1,2,3,4,5 we have T(n) > T ′(n) and T(n)≤ T ′(n) for n > 5

For sure, there are far more complicated functions T(n), e.g. T(n) = log2(n) +
√

2sin(n).

We are, in general, not interested in specific values for n but the asymptotic behaviour of T(n) (that
is for large n)
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Time complexity
Big-O-, Big-Θ- and Big-Ω-Notation
The asymptotic complexity T(n) is limited from above by a function f (n) whenever there are postive
constants n0 and c such that for all n > n0 it holds that

T(n)≤ cf (n).

In this case, we say that T(n) ∈ O(f (n))

T(n) ∈ O(f (n)) :⇔∃c > 0,n0 > 0 : ∀n > n0 : T(n)≤ cf (n)

5 / 15



Time complexity
Big-O-, Big-Θ- and Big-Ω-Notation
The asymptotic complexity T(n) is limited from above by a function f (n) whenever there are postive
constants n0 and c such that for all n > n0 it holds that

T(n)≤ cf (n).

In this case, we say that T(n) ∈ O(f (n))

T(n) ∈ O(f (n)) :⇔∃c > 0,n0 > 0 : ∀n > n0 : T(n)≤ cf (n)

5 / 15



Time complexity
Big-O-, Big-Θ- and Big-Ω-Notation
The asymptotic complexity T(n) is limited from above by a function f (n) whenever there are postive
constants n0 and c such that for all n > n0 it holds that

T(n)≤ cf (n).

In this case, we say that T(n) ∈ O(f (n))

T(n) ∈ O(f (n)) :⇔∃c > 0,n0 > 0 : ∀n > n0 : T(n)≤ cf (n)

5 / 15



Time complexity
Big-O-, Big-Θ- and Big-Ω-Notation
The asymptotic complexity T(n) is limited from above by a function f (n) whenever there are postive
constants n0 and c such that for all n > n0 it holds that

T(n)≤ cf (n).

In this case, we say that T(n) ∈ O(f (n))

T(n) ∈ O(f (n)) :⇔∃c > 0,n0 > 0 : ∀n > n0 : T(n)≤ cf (n)

The notation T(n) = O(f (n)) is also very commonly used.
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T(n) = 5n + 6 is in O(n) :

5n≤ 5n for all n (incl. n≥ 1 )

6≤ 6n for all n≥ 1

Thus, T(n) = 5n + 6≤ 5n + 6n = 11n = cf (n) for all n≥ 1

Thus, 5n + 6 ∈ O(n) (choose c = 11 and n0 = 1.)

Note, T(n) = 5n + 6≤ 11 ·n≤ 11 ·n logn≤ 11 ·n100

Hence, T(n) ∈ O(n logn), T(n) ∈ O(n100). We usually want to find tight upper bounds.
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Examples
T(n) =

p

∑
i=0

xini = xpnp + . . .+ x1n1 + x0n0 ∈ O(np) for all n≥ 1

First, xi ≤max{|x1|, . . . , |xp|}=: M for all i implies

T(n) =
p

∑
i=0

xini ≤
p

∑
i=0

Mni = M(
p

∑
i=0

ni)

Second n0 ≤ n1 ≤ ·· · ≤ np implies that

M(
p

∑
i=0

ni)≤M(
p

∑
i=0

np) = M · ((p + 1) ·np) = c ·np for c = M · (p + 1) and all n≥ n0 = 1

Thus, choose c = M ·p and n0 = 1 to conclude that T(n) ∈ O(np).
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Time complexity
Big-O-, Big-Θ- and Big-Ω-Notation
In a similar way, one can compute lower bounds f (n) to show that T(n) grows (asymptotically) at
least as “fast” as f (n)

T(n) ∈Ω(f (n)) :⇔∃c > 0,n0 > 0 : ∀n > n0 : T(n)≥ cf (n)
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T(n) = 6n2−5 ∈ O(n2) (choose e.g. c = 7 and n0 = 1)

5n2 ≤ 6n2−5 ≤ 7n2

Hence, T(n) ∈Ω(n2) and T(n) ∈ O(n2) and thus, T(n) ∈Θ(n2)
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Time complexity
Big-O-, Big-Θ- and Big-Ω-Notation

T(n) ∈ O(f (n)) :⇔∃c > 0,n0 > 0 : ∀n > n0 : T(n)≤ cf (n)
T(n) ∈Ω(f (n)) :⇔∃c > 0,n0 > 0 : ∀n > n0 : T(n)≥ cf (n)

If T(n) ∈ O(f (n)) and T(n) ∈Ω(f (n)) then T(n) ∈Θ(f (n))

Example: T(n) = n2(sin(n))2 + 50n

Since sin(n)≤ 1, we have n2(sin(n))2 + 50n≤ n2 + 50n≤ 2n2 for all n≥ 50 and thus, T(n) ∈ O(n2)

Since n2(sin(n))2 ≥ 0, we have n2(sin(n))2 + 50n≥ 50n for all n≥ 1 and thus, T(n) ∈Ω(n)
( and we can’t do better - thus ”no Θ for T(n)”! )

50n ≤ n2sin(n) ≤ x2
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Time complexity
O-Notation

O(. . .) (rt=runtime) typical framework typical examples

O(1) constant rt a=b+c // if(a<b) assignments, in/output,
32/64bit-arithmetic,
cases

O(logn) logarithmic rt while(N>1) N = N/2 binary search

O(n) linear rt for(i=0; i<n; i++){. . .} loop
find the maximum

O(n2) quadratic rt for(i=0; i<n; i++) double loop,
for(j=0; j<n; j++) {. . .} check all pairs

O(n3) cubic rt for(i=0; i<n; i++) triple loop,
for(j=0; j<n; j++) check all triples
for(k=0; k<n; k++) {. . .}

O(2n) exponential rt see combinatorial lecture;) exhaustive search
check all subsets
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Time Complexity
General rules
Now, O-notation only which is the most interesting part for us.

Loops: Product of number of runs and costs of most expencive task within this loop
Summation of parts: If algorithm A consists of two independent parts A1 and A2 (with runtime
T1(n) ∈ O(f (n)), resp., T2(n) ∈ O(g(n))), then complexity of A is

T(n) = T1(n) + T2(n) = O(f (n) + g(n)) = O(max{f (n),g(n)})

DO SMTH(int n)
1: print ”Hello World”
2: for (int i = 0; i < n; i++) do
3: if n is even then
4: return 0
5: else
6: for (int j = 0; j < n; j++) do
7: n = n ·n
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2: for (int i = 0; i < n; i++) do
3: if n is even then
4: return 0
5: else
6: for (int j = 0; j < n; j++) do
7: n = n ·n
All assignments, cases, statements (eg. print, int i = 0, n = n ·n, return 0, j < n) in O(1) time

DO SMTH consists of two main-parts:

A1 = print ”Hello World” and A2 = Line 2-7

Hence, runtime of DO SMTH is O(1)+ runtime A2 =⇒ examine A2 !
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3: if n is even then
4: return 0
5: else
6: for (int j = 0; j < n; j++) do
7: n = n ·n
The most expensive task within the loop in Line 2 is the call of the 2nd for Loop in Line 6

=⇒ examine 2nd loop:

number of runs = n and most expensive task ”n = n ·n” in O(1) time

Thus, runtime 2nd loop is O(n)

Hence, runtime first loop = number of runs times most expensive task ∈ O(n2)

Thus, runtime DO SMTH is O(1)+ runtime A2 ∈ O(1 + n2) = O(n2)
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Time Complexity
Further example

DO SMTH(graph G = (V,E))
1: for (all vertices v ∈ V) do
2: for (all vertices x ∈ N(v)) do
3: print ”neighbor of v is x”

Naive way:

T(n) = |V|2 since for all |V| vertices, we print all neighbors in N(v) and |N(v)| ≤ |V|

Better way:

For each v ∈ V we print all deg(v) vertices.

Hence, T(n) = ∑v∈V deg(v) = 2|E| ∈ O(|E|).

Thus, instead of a quadratic runtime O(|V|2) this algorithm has even linear runtime O(|E|)
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Time Complexity
Further example
HALVE(int n)
1: while (n > 1) do
2: n = n

2 (pre-decimal point position)

T(n) = T(1) + T(
n
2

)

= T(1) + (T(1) + T(
n
4

)) = 2T(1) + T(
n
4

)

= 2T(1) + (T(1) + T(
n
8

)) = 3T(1) + T(
n
8

)

= . . .

= NT(1) + T(
n

2N ))

How often can on repeat this, that is, what is N?
Hence, we ask: When is ”input for while” n

2N ≤ 1? Answer: n
2N ≤ 1 ⇐⇒ n≤ 2N ⇐⇒ log2(n)≤ N

Put N = log2(n) T(n) = NT(1) + T(
n

2N )

= log2(n)T(1) + T(1)

∈ O(log2(n))
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Time Complexity
Further example

// SUM returns the sum ∑
n
i=1 i, where n≥ 1.

SUM(int n)
1: if (n = 1) then
2: return 1
3: return n + SUM(n−1)

T(n) = T(1) + T(n−1)

= T(1) + (T(1) + T(n−2) = 2T(1) + T(n−2)

= . . .

= (n−1)T(1) + T(1) ∈ O(n) since T(1) ∈ O(1)

12 / 15



Time Complexity
Further example
In a similar way one may show that an algorithm as exponential runtime.

Example: Fibonacci Numbers 1,1,2,3,5,8,13,21,34, . . .
Fibonacci Numbers are recursively defined:
• f (1) = f (2) = 1
• f (n) = f (n−1) + f (n−2), n > 2.

naive recursive way (there are more efficient algorithms (dynamic programming)):
FIB(int n≥ 1)
1: if n≤ 2 then f = 1
2: else
3: f = FIB(n−1) + FIB(n−2)

4: return f

T(n) = Θ(1) + T(n−1) + T(n−2))

≥ 2T(n−2) = 2(T(n−3) + T(n−4))

≥ 2(2T(n−4))

≥ ·· · ≥ 2
n
2 ∈Ω(2

n
2 )

Hence, FIB has exponential runtime.
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4: return f

T(n) = Θ(1) + T(n−1) + T(n−2))

≥ 2T(n−2) = 2(T(n−3) + T(n−4))

≥ 2(2T(n−4))

≥ ·· · ≥ 2
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2 ∈Ω(2
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Hence, FIB has exponential runtime.
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Time Complexity
Master Theorem

Helpful for recurrence relations in a very particular form, that often show up when analyzing
recursive algorithms.

Let a≥ 1 and b > 1 be constants and let T(n) be a function over the positive numbers defined by the
recurrence

T(n) = aT(n/b) + Θ(nd).

Then,

T(n) =


Θ(nd) if a < bd

Θ(nd log2 n) if a = bd

Θ(nlogb(a)) if a > bd

Examples: Note T(1) = Θ(1).

Put d=2, b=3
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Θ(nlogb(a)) if a > bd

Examples: Note T(1) = Θ(1).

Put d=2, b=3

• Exmpl HALVE: T(n) = T( n
2 ) + Θ(1). Here, a = 1,b = 2,nd = 1 and thus, d = 0.

We have a = 1 = 20 = bd and thus, T(n) = Θ(1 log2 n) = Θ(log2 n)
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Time Complexity
Master Theorem

Helpful for recurrence relations in a very particular form, that often show up when analyzing
recursive algorithms.

Let a≥ 1 and b > 1 be constants and let T(n) be a function over the positive numbers defined by the
recurrence

T(n) = aT(n/b) + Θ(nd).

Then,

T(n) =


Θ(nd) if a < bd

Θ(nd log2 n) if a = bd

Θ(nlogb(a)) if a > bd

Examples: Note T(1) = Θ(1). Put d=2, b=3

a=8 T(n) = 8T( n
3 ) + Θ(n2) =⇒ T(n) = Θ(n2)

a=9 T(n) = 9T( n
3 ) + Θ(n2) =⇒ T(n) = Θ(n2 log2 n)

a=10 T(n) = 10T( n
3 ) + Θ(n2) =⇒ T(n) = Θ(nlog3(10))
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Space Complexity

Space complexity is a measure of the amount of working storage an algorithm needs.

Similar to time complexity, space complexity is often expressed asymptotically in big-O notation
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Space complexity is a measure of the amount of working storage an algorithm needs.

Similar to time complexity, space complexity is often expressed asymptotically in big-O notation

SUM(int x, y, z)
1: int r = x + y + z
2: return r

Requires 3 units of space for the parameters x,y,z and 1 for the local variable r.

Space complexity is in O(1)
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Space Complexity

Space complexity is a measure of the amount of working storage an algorithm needs.

Similar to time complexity, space complexity is often expressed asymptotically in big-O notation

SUM(array a of length n)
1: int r = 0
2: for (int i = 0; i < n; ++i) do
3: r = r + a[i];
4: return r

Requires n units of space for array a and 2 for the local variables r and i.

Space complexity is in O(n)
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Space Complexity

Space complexity is a measure of the amount of working storage an algorithm needs.

Similar to time complexity, space complexity is often expressed asymptotically in big-O notation

But be careful here: If things are passed by pointer or reference, then space is shared.
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