
Algorithms and Complexity
2. Complexity

Marc Hellmuth

University of Stockholm

Reminder: O-, Θ- and Ω-Notation

For positive functions f and g, we define
• g(n) ∈ O(f (n)) :⇔∃c > 0,n0 > 0 : ∀n > n0 : g(n)≤ cf (n)

• g(n) ∈Ω(f (n)) :⇔∃c > 0,n0 > 0 : ∀n > n0 : g(n)≥ cf (n)

• g(n) ∈Θ(f (n)) :⇔ g(n) ∈ O(f (n)) and g(n) ∈Ω(f (n)).

The notation g(n) = O(f (n)) is also very commonly used.

WHITEBOARD: merge sort vs insertion sort =⇒ runtime matters!

1 / 17

Complexity

Question: Does there exist algorithms for every problem to solve it in polynomial time?

Answer

A1 NO, there are problems that cannot be solved by any algorithm [e.g. Halting
Problem]

A2 Many problems can be solved by alorithms but not in polynomial-time (under
reasonable assumptions)

A1 WHITEBOARD: unsolvable (undecidable) problem

− the halting problem
− almost all decision problems cannot be solved by algorithms.

A2 Theory of NP-completeness

2 / 17

Complexity

Question: Does there exist algorithms for every problem to solve it in polynomial time?

Answer

A1 NO, there are problems that cannot be solved by any algorithm [e.g. Halting
Problem]

A2 Many problems can be solved by alorithms but not in polynomial-time (under
reasonable assumptions)

A1 WHITEBOARD: unsolvable (undecidable) problem

− the halting problem
− almost all decision problems cannot be solved by algorithms.

A2 Theory of NP-completeness

2 / 17

Complexity

Question: Does there exist algorithms for every problem to solve it in polynomial time?

Answer

A1 NO, there are problems that cannot be solved by any algorithm [e.g. Halting
Problem]

A2 Many problems can be solved by alorithms but not in polynomial-time (under
reasonable assumptions)

A1 WHITEBOARD: unsolvable (undecidable) problem

− the halting problem
− almost all decision problems cannot be solved by algorithms.

A2 Theory of NP-completeness

2 / 17

Complexity

Question: Does there exist algorithms for every problem to solve it in polynomial time?

Answer

A1 NO, there are problems that cannot be solved by any algorithm [e.g. Halting
Problem]

A2 Many problems can be solved by alorithms but not in polynomial-time (under
reasonable assumptions)

A1 WHITEBOARD: unsolvable (undecidable) problem

− the halting problem
− almost all decision problems cannot be solved by algorithms.

A2 Theory of NP-completeness

2 / 17

Theory of NP-completeness: Literature

Computers and Intractability: A Guide to the Theory of NP-Completeness
by Michael R. Garey, David S. Johnson
Published January 15th 1979 by W. H. Freeman

3 / 17

In a nutshell:

Aim: How difficult or easy is a problem that we want to solve?

Recap:
• There are problems that can be solved in polynomial time

(EASY, tractable problems)

• There are problems where no algorithms exist to solve them
in finite time (UNSOLVABLE)
e.g. Halting-problem [determine whether a given algorithm terminates]

Questions:
• What about problems that can be solved in finite time, say there is an

exponential-time algorithm with runtime O(1.5n), but no polynomial-time
algorithm has been found so-far?

⇒ Should we search further for polynomial-time algorithms?

Or could we stop searching, since there is some evidence that no
polynomial-time algorithm may exist?

4 / 17

In a nutshell:

Aim: How difficult or easy is a problem that we want to solve?

Recap:
• There are problems that can be solved in polynomial time

(EASY, tractable problems)

• There are problems where no algorithms exist to solve them
in finite time (UNSOLVABLE)
e.g. Halting-problem [determine whether a given algorithm terminates]

Questions:
• What about problems that can be solved in finite time, say there is an

exponential-time algorithm with runtime O(1.5n), but no polynomial-time
algorithm has been found so-far?

⇒ Should we search further for polynomial-time algorithms?

Or could we stop searching, since there is some evidence that no
polynomial-time algorithm may exist?

4 / 17

In a nutshell:

Aim: How difficult or easy is a problem that we want to solve?

Recap:
• There are problems that can be solved in polynomial time

(EASY, tractable problems)

• There are problems where no algorithms exist to solve them
in finite time (UNSOLVABLE)
e.g. Halting-problem [determine whether a given algorithm terminates]

Questions:
• What about problems that can be solved in finite time, say there is an

exponential-time algorithm with runtime O(1.5n), but no polynomial-time
algorithm has been found so-far?

⇒ Should we search further for polynomial-time algorithms?

Or could we stop searching, since there is some evidence that no
polynomial-time algorithm may exist?

4 / 17

In a nutshell:

Aim: How difficult or easy is a problem that we want to solve?

Recap:
• There are problems that can be solved in polynomial time

(EASY, tractable problems)

• There are problems where no algorithms exist to solve them
in finite time (UNSOLVABLE)
e.g. Halting-problem [determine whether a given algorithm terminates]

Questions:
• What about problems that can be solved in finite time, say there is an

exponential-time algorithm with runtime O(1.5n), but no polynomial-time
algorithm has been found so-far?

⇒ Should we search further for polynomial-time algorithms?

Or could we stop searching, since there is some evidence that no
polynomial-time algorithm may exist?

4 / 17

In a nutshell:

Aim: How difficult or easy is a problem that we want to solve?

Recap:
• There are problems that can be solved in polynomial time

(EASY, tractable problems)

• There are problems where no algorithms exist to solve them
in finite time (UNSOLVABLE)
e.g. Halting-problem [determine whether a given algorithm terminates]

Questions:
• What about problems that can be solved in finite time, say there is an

exponential-time algorithm with runtime O(1.5n), but no polynomial-time
algorithm has been found so-far?

⇒ Should we search further for polynomial-time algorithms?

Or could we stop searching, since there is some evidence that no
polynomial-time algorithm may exist?

4 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

A

B

Find a shortest path between A and B under the assumption that all edges e
have weight

w(e) = 1 w(e) = -1
(solvable in polynomial time) Up to now, only exponential-time

algorithms are known!

EASY! DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

A

B
1

1

1

1

1

1

1 1

1

Find a shortest path between A and B under the assumption that all edges e
have weight

w(e) = 1

w(e) = -1
(solvable in polynomial time) Up to now, only exponential-time

algorithms are known!

EASY! DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

A

B
1

1

1

1

1

1

1 1

1

Find a shortest path between A and B under the assumption that all edges e
have weight

w(e) = 1

w(e) = -1

(solvable in polynomial time)

Up to now, only exponential-time
algorithms are known!

EASY!

DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

A

B
-1

-1

-1

-1

-1

-1

-1 -1

-1

Find a shortest path between A and B under the assumption that all edges e
have weight

w(e) = 1 w(e) = -1
(solvable in polynomial time)

Up to now, only exponential-time
algorithms are known!

EASY!

DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

A

B
-1

-1

-1

-1

-1

-1

-1 -1

-1

Find a shortest path between A and B under the assumption that all edges e
have weight

w(e) = 1 w(e) = -1
(solvable in polynomial time) Up to now, only exponential-time

algorithms are known!

EASY!

DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

A

B
-1

-1

-1

-1

-1

-1

-1 -1

-1

Find a shortest path between A and B under the assumption that all edges e
have weight

w(e) = 1 w(e) = -1
(solvable in polynomial time) Up to now, only exponential-time

algorithms are known!

EASY! DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

Find a coloring of the houses such that neighbors have different colors

with 2 colors with 3 colors
solvable in polynomial time Up to now, only exponential-time

algorithms are known!

EASY! DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

Find a coloring of the houses such that neighbors have different colors

with 2 colors with 3 colors
solvable in polynomial time Up to now, only exponential-time

algorithms are known!

EASY! DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

Find a coloring of the houses such that neighbors have different colors

with 2 colors

with 3 colors
solvable in polynomial time Up to now, only exponential-time

algorithms are known!

EASY! DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

Find a coloring of the houses such that neighbors have different colors

with 2 colors

with 3 colors

solvable in polynomial time

Up to now, only exponential-time
algorithms are known!

EASY!

DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

Find a coloring of the houses such that neighbors have different colors

with 2 colors with 3 colors
solvable in polynomial time

Up to now, only exponential-time
algorithms are known!

EASY!

DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

Find a coloring of the houses such that neighbors have different colors

with 2 colors with 3 colors
solvable in polynomial time

Up to now, only exponential-time
algorithms are known!

EASY!

DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

Find a coloring of the houses such that neighbors have different colors

with 2 colors with 3 colors
solvable in polynomial time Up to now, only exponential-time

algorithms are known!

EASY!

DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

Find a coloring of the houses such that neighbors have different colors

with 2 colors with 3 colors
solvable in polynomial time Up to now, only exponential-time

algorithms are known!

EASY! DIFFICULT?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

It doesn’t seem to be a simple task to distinguish between difficult and easy!

(Q1) What does difficult formally mean?

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

What are these assumptions?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

It doesn’t seem to be a simple task to distinguish between difficult and easy!

(Q1) What does difficult formally mean?

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

What are these assumptions?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

It doesn’t seem to be a simple task to distinguish between difficult and easy!

(Q1) What does difficult formally mean?

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

What are these assumptions?

5 / 17

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

It doesn’t seem to be a simple task to distinguish between difficult and easy!

(Q1) What does difficult formally mean?

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

What are these assumptions?

5 / 17

Easy vs. Difficult is not obvious!

• Main Ingredients

− Optimization problems vs. decision problems
− Classes P and NP
− Reduction and NP-hardness
− NP-completeness

We start with a brief overview of the main ingredients to answer these
questions.

6 / 17

Optimization Problems vs. Decision Problems

• An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

• A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length ≤ K for some K ∈ N?

Memory Hook: Opt. Problem “easy”⇒ Dec. Problem “easy”
Dec. Problem “difficult”⇒ Opt. Problem “difficult”

7 / 17

Optimization Problems vs. Decision Problems

• An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

• A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length ≤ K for some K ∈ N?

Memory Hook: Opt. Problem “easy”⇒ Dec. Problem “easy”
Dec. Problem “difficult”⇒ Opt. Problem “difficult”

7 / 17

Optimization Problems vs. Decision Problems

• An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

• A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length ≤ K for some K ∈ N?

Memory Hook: Opt. Problem “easy”⇒ Dec. Problem “easy”
Dec. Problem “difficult”⇒ Opt. Problem “difficult”

7 / 17

Optimization Problems vs. Decision Problems

• An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

• A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length ≤ K for some K ∈ N?

Memory Hook: Opt. Problem “easy”⇒ Dec. Problem “easy”
Dec. Problem “difficult”⇒ Opt. Problem “difficult”

7 / 17

Optimization Problems vs. Decision Problems

• An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

• A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length ≤ K for some K ∈ N?

Memory Hook: Opt. Problem “easy”⇒ Dec. Problem “easy”
Dec. Problem “difficult”⇒ Opt. Problem “difficult”

7 / 17

Optimization Problems vs. Decision Problems

• An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

• A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length ≤ K for some K ∈ N?

Memory Hook: Opt. Problem “easy”⇒ Dec. Problem “easy”

Dec. Problem “difficult”⇒ Opt. Problem “difficult”

7 / 17

Optimization Problems vs. Decision Problems

• An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

• A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length ≤ K for some K ∈ N?

Memory Hook: Opt. Problem “easy”⇒ Dec. Problem “easy”
Dec. Problem “difficult”⇒ Opt. Problem “difficult”

7 / 17

Optimization Problems vs. Decision Problems

• An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

• A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length ≤ K for some K ∈ N?

Memory Hook: Opt. Problem “easy”⇒ Dec. Problem “easy”
Dec. Problem “difficult”⇒ Opt. Problem “difficult”

To classify “difficulty”, decisions problems are used:
• To prove that an optimization problem is difficult, it suffices to show that the

corresponding decision problem is difficult.

• Decision problems have a very natural, formal counterpart called “language”, as we
have seen in the section about “TM and languages that are accepted by TM”

7 / 17

Optimization Problems vs. Decision Problems

• An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

• A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length ≤ K for some K ∈ N?

Memory Hook: Opt. Problem “easy”⇒ Dec. Problem “easy”
Dec. Problem “difficult”⇒ Opt. Problem “difficult”

To classify “difficulty”, decisions problems are used:
• To prove that an optimization problem is difficult, it suffices to show that the

corresponding decision problem is difficult.
• Decision problems have a very natural, formal counterpart called “language”, as we

have seen in the section about “TM and languages that are accepted by TM”

7 / 17

Outline

• Main Ingredients

− Optimization problems vs. decision problems X
− Classes P and NP
− Reduction and NP-hardness
− NP-completeness

8 / 17

TM and Algorithms

A TM M accepts w ∈Σ∗ ⇐⇒ M halts in state qaccept for w as input.

L(M) := {w ∈Σ∗ |M accepts w}.
Note, if w ∈ L(M)\Σ∗, then M with input w may never halt or rejects

A language L⊆Σ∗ is TM-recognizable ⇐⇒ there is TM M such that L = L(M)

A decision problem D can be viewed as a language encoding all yes-instances:
LD = {all instances w ∈ D with YES-answer}
Hence, any w ∈ LD \Σ∗ does not encode an instance of D or the answer is NO.

A TM M (equ. an algorithm) solves a decision problem D ⇐⇒ LD = L(M) and it halts for
all w ∈Σ∗. If this TM runs in polynomial-time, then D is said to be polynomial-time
solvable.

The TMs considered so-far are deterministic, i.e., each step of computation is uniquely
determined by the transition function δ and the same input will always yield the same
computational steps.

9 / 17

TM and Algorithms

A TM M accepts w ∈Σ∗ ⇐⇒ M halts in state qaccept for w as input.

L(M) := {w ∈Σ∗ |M accepts w}.
Note, if w ∈ L(M)\Σ∗, then M with input w may never halt or rejects

A language L⊆Σ∗ is TM-recognizable ⇐⇒ there is TM M such that L = L(M)

A decision problem D can be viewed as a language encoding all yes-instances:
LD = {all instances w ∈ D with YES-answer}
Hence, any w ∈ LD \Σ∗ does not encode an instance of D or the answer is NO.

A TM M (equ. an algorithm) solves a decision problem D ⇐⇒ LD = L(M) and it halts for
all w ∈Σ∗. If this TM runs in polynomial-time, then D is said to be polynomial-time
solvable.

The TMs considered so-far are deterministic, i.e., each step of computation is uniquely
determined by the transition function δ and the same input will always yield the same
computational steps.

9 / 17

TM and Algorithms

A TM M accepts w ∈Σ∗ ⇐⇒ M halts in state qaccept for w as input.

L(M) := {w ∈Σ∗ |M accepts w}.
Note, if w ∈ L(M)\Σ∗, then M with input w may never halt or rejects

A language L⊆Σ∗ is TM-recognizable ⇐⇒ there is TM M such that L = L(M)

A decision problem D can be viewed as a language encoding all yes-instances:
LD = {all instances w ∈ D with YES-answer}
Hence, any w ∈ LD \Σ∗ does not encode an instance of D or the answer is NO.

A TM M (equ. an algorithm) solves a decision problem D ⇐⇒ LD = L(M) and it halts for
all w ∈Σ∗. If this TM runs in polynomial-time, then D is said to be polynomial-time
solvable.

The TMs considered so-far are deterministic, i.e., each step of computation is uniquely
determined by the transition function δ and the same input will always yield the same
computational steps.

9 / 17

TM and Algorithms

A TM M accepts w ∈Σ∗ ⇐⇒ M halts in state qaccept for w as input.

L(M) := {w ∈Σ∗ |M accepts w}.
Note, if w ∈ L(M)\Σ∗, then M with input w may never halt or rejects

A language L⊆Σ∗ is TM-recognizable ⇐⇒ there is TM M such that L = L(M)

A decision problem D can be viewed as a language encoding all yes-instances:
LD = {all instances w ∈ D with YES-answer}
Hence, any w ∈ LD \Σ∗ does not encode an instance of D or the answer is NO.

A TM M (equ. an algorithm) solves a decision problem D ⇐⇒ LD = L(M) and it halts for
all w ∈Σ∗. If this TM runs in polynomial-time, then D is said to be polynomial-time
solvable.

The TMs considered so-far are deterministic, i.e., each step of computation is uniquely
determined by the transition function δ and the same input will always yield the same
computational steps.

9 / 17

TM and Algorithms

A TM M accepts w ∈Σ∗ ⇐⇒ M halts in state qaccept for w as input.

L(M) := {w ∈Σ∗ |M accepts w}.
Note, if w ∈ L(M)\Σ∗, then M with input w may never halt or rejects

A language L⊆Σ∗ is TM-recognizable ⇐⇒ there is TM M such that L = L(M)

A decision problem D can be viewed as a language encoding all yes-instances:
LD = {all instances w ∈ D with YES-answer}
Hence, any w ∈ LD \Σ∗ does not encode an instance of D or the answer is NO.

A TM M (equ. an algorithm) solves a decision problem D ⇐⇒ LD = L(M) and it halts for
all w ∈Σ∗. If this TM runs in polynomial-time, then D is said to be polynomial-time
solvable.

The TMs considered so-far are deterministic, i.e., each step of computation is uniquely
determined by the transition function δ and the same input will always yield the same
computational steps.

9 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}

= {dec. probl. verifiable in polynomial time}

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}

= {dec. probl. verifiable in polynomial time}

What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

guessing stage [Guess a solution once]
non-deterministic part: If there is a YES-solution, then one of

these solutions is returned!

checking stage [Verify if the solution is a YES-answer]
computed in a normal deterministic manner.

NP means “Non-deterministic Polynomial” (NOT: non-polynomial !)

Keep in mind that algorithms are essentially defined in terms of TM.

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}

= {dec. probl. verifiable in polynomial time}

What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

guessing stage [Guess a solution once]
non-deterministic part: If there is a YES-solution, then one of

these solutions is returned!

checking stage [Verify if the solution is a YES-answer]
computed in a normal deterministic manner.

NP means “Non-deterministic Polynomial” (NOT: non-polynomial !)

Keep in mind that algorithms are essentially defined in terms of TM.

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}

= {dec. probl. verifiable in polynomial time}

What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

guessing stage [Guess a solution once]
non-deterministic part: If there is a YES-solution, then one of

these solutions is returned!

checking stage [Verify if the solution is a YES-answer]
computed in a normal deterministic manner.

NP means “Non-deterministic Polynomial” (NOT: non-polynomial !)

Keep in mind that algorithms are essentially defined in terms of TM.

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}

= {dec. probl. verifiable in polynomial time}

What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

guessing stage [Guess a solution once]
non-deterministic part: If there is a YES-solution, then one of

these solutions is returned!

checking stage [Verify if the solution is a YES-answer]
computed in a normal deterministic manner.

NP means “Non-deterministic Polynomial” (NOT: non-polynomial !)

Keep in mind that algorithms are essentially defined in terms of TM.

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

guessing stage [Guess a solution once]
non-deterministic part: If there is a YES-solution, then one of

these solutions is returned!

checking stage [Verify if the solution is a YES-answer]
computed in a normal deterministic manner.

NP means “Non-deterministic Polynomial” (NOT: non-polynomial !)

Keep in mind that algorithms are essentially defined in terms of TM.

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

guessing stage [Guess a solution once]
non-deterministic part: If there is a YES-solution, then one of

these solutions is returned!

checking stage [Verify if the solution is a YES-answer]
computed in a normal deterministic manner.

NP means “Non-deterministic Polynomial” (NOT: non-polynomial !)

Keep in mind that algorithms are essentially defined in terms of TM.

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: Shortest Path

A

B
1

1

1

1

1

1

1 1

1

Question: Does there exist a path of length ≤ 4 from A to B?

guessing stage [Guess a solution once]

checking stage [Verify if the solution is a YES-answer]

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: Shortest Path

A

B
1

1

1

1

1

1

1 1

1

Question: Does there exist a path of length ≤ 4 from A to B?

guessing stage [Guess a solution once]

checking stage [Verify if the solution is a YES-answer]

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: Shortest Path

∈ NP

A

B
1

1

1

1

1

1

1 1

1

Question: Does there exist a path of length ≤ 4 from A to B?

guessing stage [Guess a solution once]

checking stage [Verify if the solution is a YES-answer]

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: Shortest Path ∈ NP

A

B
1

1

1

1

1

1

1 1

1

Question: Does there exist a path of length ≤ 4 from A to B?

guessing stage [Guess a solution once]

checking stage [Verify if the solution is a YES-answer]

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: 3-coloring

∈ NP

Question: Does there exist a 3-coloring?

guessing stage [Guess a solution once]

checking stage [Verify if the solution is a YES-answer]

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: 3-coloring

∈ NP

Question: Does there exist a 3-coloring?

guessing stage [Guess a solution once]

checking stage [Verify if the solution is a YES-answer]

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: 3-coloring

∈ NP

Question: Does there exist a 3-coloring?

guessing stage [Guess a solution once]

checking stage [Verify if the solution is a YES-answer]

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: 3-coloring ∈ NP

Question: Does there exist a 3-coloring?

guessing stage [Guess a solution once]

checking stage [Verify if the solution is a YES-answer]

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P⊆ NP

P-NP-Problem: P⊂ NP or P = NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
What are these assumptions?

Answer: P⊂ NP

⇒ There are problems in NP\P 6= /0
These problems can be verified but not solved in polynomial time!

The formal theory of P and NP is defined in term of languages and Turing machines

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P⊆ NP

P-NP-Problem: P⊂ NP or P = NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
What are these assumptions?

Answer: P⊂ NP

⇒ There are problems in NP\P 6= /0
These problems can be verified but not solved in polynomial time!

The formal theory of P and NP is defined in term of languages and Turing machines

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P⊆ NP

P-NP-Problem: P⊂ NP or P = NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
What are these assumptions?

Answer: P⊂ NP

⇒ There are problems in NP\P 6= /0
These problems can be verified but not solved in polynomial time!

The formal theory of P and NP is defined in term of languages and Turing machines

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P⊆ NP

P-NP-Problem: P⊂ NP or P = NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
What are these assumptions?

Answer: P⊂ NP

⇒ There are problems in NP\P 6= /0
These problems can be verified but not solved in polynomial time!

The formal theory of P and NP is defined in term of languages and Turing machines

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P⊆ NP

P-NP-Problem: P⊂ NP or P = NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
What are these assumptions?

Answer: P⊂ NP
⇒ There are problems in NP\P 6= /0

These problems can be verified but not solved in polynomial time!

The formal theory of P and NP is defined in term of languages and Turing machines

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P⊆ NP

P-NP-Problem: P⊂ NP or P = NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
What are these assumptions? Answer: P⊂ NP

⇒ There are problems in NP\P 6= /0
These problems can be verified but not solved in polynomial time!

The formal theory of P and NP is defined in term of languages and Turing machines

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P⊆ NP

P-NP-Problem: P⊂ NP or P = NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
What are these assumptions? Answer: P⊂ NP
⇒ There are problems in NP\P 6= /0

These problems can be verified but not solved in polynomial time!

The formal theory of P and NP is defined in term of languages and Turing machines

10 / 17

P vs. NP
P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

= {dec. probl. solvable in polynomial time}

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P⊆ NP

P-NP-Problem: P⊂ NP or P = NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
What are these assumptions? Answer: P⊂ NP
⇒ There are problems in NP\P 6= /0

These problems can be verified but not solved in polynomial time!

The formal theory of P and NP is defined in term of languages and Turing machines

10 / 17

Outline

• Main Ingredients

− Optimization problems vs. decision problems X
− Classes P and NP (P (NP)X
− Reduction and NP-hardness
− NP-completeness

11 / 17

Reduction . . .
. . . is about transforming one problem into another problem

D′ (number coins)
IN: Set of coins & integer K
Q: Number of coins ≤ K ?

D (weight of items)
IN: Item i & integer L
Q: Weight(i)≤ L?

12 / 17

Reduction . . .
. . . is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest?

D′ (number coins)
IN: Set of coins & integer K
Q: Number of coins ≤ K ?

D (weight of items)
IN: Item i & integer L
Q: Weight(i)≤ L?

12 / 17

Reduction . . .
. . . is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest?

D′ (number coins)
IN: Set of coins & integer K
Q: Number of coins ≤ K ?

D (weight of items)
IN: Item i & integer L
Q: Weight(i)≤ L?

12 / 17

Reduction . . .
. . . is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest?

D′ (number coins)
IN: Set of coins & integer K
Q: Number of coins ≤ K ?

D (weight of items)
IN: Item i & integer L
Q: Weight(i)≤ L?

12 / 17

Reduction . . .
. . . is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest?

YOU: 1 coin = 8g

D′ (number coins)
IN: Set of coins & integer K
Q: Number of coins ≤ K ?

D (weight of items)
IN: Item i & integer L
Q: Weight(i)≤ L?

12 / 17

Reduction . . .
. . . is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest?

YOU: 1 coin = 8g
 all coins = 97760 g
 = 12220 * 8g

D′ (number coins)
IN: Set of coins & integer K
Q: Number of coins ≤ K ?

D (weight of items)
IN: Item i & integer L
Q: Weight(i)≤ L?

12 / 17

Reduction . . .
. . . is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest?

YOU: 1 coin = 8g
 all coins = 97760 g
 = 12220 * 8g

Answer: YESSSS!!

D′ (number coins)
IN: Set of coins & integer K
Q: Number of coins ≤ K ?

D (weight of items)
IN: Item i & integer L
Q: Weight(i)≤ L?

12 / 17

Reduction . . .
. . . is about transforming one problem into another problem

reduction

We reduced a counting problem to a weighting problem!

D, D' decision problems

reductionI'=(,K=12222) I=(,L=8*12222)

D′ (number coins)
IN: Set of coins & integer K
Q: Number of coins ≤ K ?

D (weight of items)
IN: Item i & integer L
Q: Weight(i)≤ L?

12 / 17

Reduction . . .
. . . is about transforming one problem into another problem

reduction

We reduced a counting problem to a weighting problem!

D, D' decision problems

reductionI'=(,K=12222) I=(,L=8*12222)

D′ (number coins)
IN: Set of coins & integer K
Q: Number of coins ≤ K ?

D (weight of items)
IN: Item i & integer L
Q: Weight(i)≤ L?

12 / 17

Reduction . . .
. . . is about transforming one problem into another problem

reduction

We reduced a counting problem to a weighting problem!

D, D' decision problems

reductionI'=(,K) I=(,L=f(K))

D′ (number coins)
IN: Set of coins & integer K
Q: Number of coins ≤ K ?

D (weight of items)
IN: Item i & integer L
Q: Weight(i)≤ L?

12 / 17

Reduction . . .
. . . is about transforming one problem into another problem

reduction

We reduced a counting problem to a weighting problem!

D, D' decision problems

 A
ll instances of D

All instances of D

Transformed
instances of D'

reductionI'=(,K) I=(,L=f(K))

'

D′ (number coins)
IN: Set of coins & integer K
Q: Number of coins ≤ K ?

D (weight of items)
IN: Item i & integer L
Q: Weight(i)≤ L?

12 / 17

Reduction

and NP-hard

D, D' decision problems

 A
ll instances of D

All instances of D

Transformed
instances of D'

reductionI' I

'
P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D′ to D is a procedure that transforms every instance I′ of D′ to an instance I of D
such that
• the transformation can be done in polynomial time (= “easy”) and
• I has YES-answer if and only if I′ has YES-answer.

⇒ Every algorithm that solves D can be used to solve D′.

13 / 17

Reduction

and NP-hard

D, D' decision problems

 A
ll instances of D

All instances of D

Transformed
instances of D'

reductionI' I

'
P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D′ to D is a procedure that transforms every instance I′ of D′ to an instance I of D
such that
• the transformation can be done in polynomial time (= “easy”) and
• I has YES-answer if and only if I′ has YES-answer.

⇒ Every algorithm that solves D can be used to solve D′.

13 / 17

Reduction

and NP-hard

D, D' decision problems

 A
ll instances of D

All instances of D

Transformed
instances of D'

reductionI' I

'
P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D′ to D is a procedure that transforms every instance I′ of D′ to an instance I of D
such that
• the transformation can be done in polynomial time (= “easy”) and
• I has YES-answer if and only if I′ has YES-answer.

⇒ Every algorithm that solves D can be used to solve D′.

13 / 17

Reduction and NP-hard
D, D' decision problems

 A
ll instances of D

All instances of D

Transformed
instances of D'

reductionI' I

'
P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D′ to D is a procedure that transforms every instance I′ of D′ to an instance I of D
such that
• the transformation can be done in polynomial time (= “easy”) and
• I has YES-answer if and only if I′ has YES-answer.

⇒ Every algorithm that solves D can be used to solve D′.

A dec. problem D is NP-hard if every problem D′ ∈ NP can be reduced to D.

If D is NP-hard, then

• every problem D′ ∈ NP can be considered as a “special case” of D.

• D is at least as difficult to solve as any other problem in NP.

• D is at least as difficult to solve as those problems in NP for which no polynomial-time algorithm exists (P⊂ NP)

• it is reasonable to assume that for D there are no polynomial-time algorithm.

(Q1) What does difficult formally mean? Answer: NP-hard

13 / 17

Reduction and NP-hard
D, D' decision problems

 A
ll instances of D

All instances of D

Transformed
instances of D'

reductionI' I

'
P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D′ to D is a procedure that transforms every instance I′ of D′ to an instance I of D
such that
• the transformation can be done in polynomial time (= “easy”) and
• I has YES-answer if and only if I′ has YES-answer.

⇒ Every algorithm that solves D can be used to solve D′.

A dec. problem D is NP-hard if every problem D′ ∈ NP can be reduced to D.

If D is NP-hard, then

• every problem D′ ∈ NP can be considered as a “special case” of D.

• D is at least as difficult to solve as any other problem in NP.

• D is at least as difficult to solve as those problems in NP for which no polynomial-time algorithm exists (P⊂ NP)

• it is reasonable to assume that for D there are no polynomial-time algorithm.

(Q1) What does difficult formally mean? Answer: NP-hard

13 / 17

Reduction and NP-hard
D, D' decision problems

 A
ll instances of D

All instances of D

Transformed
instances of D'

reductionI' I

'
P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D′ to D is a procedure that transforms every instance I′ of D′ to an instance I of D
such that
• the transformation can be done in polynomial time (= “easy”) and
• I has YES-answer if and only if I′ has YES-answer.

⇒ Every algorithm that solves D can be used to solve D′.

A dec. problem D is NP-hard if every problem D′ ∈ NP can be reduced to D.

If D is NP-hard, then

• every problem D′ ∈ NP can be considered as a “special case” of D.

• D is at least as difficult to solve as any other problem in NP.

• D is at least as difficult to solve as those problems in NP for which no polynomial-time algorithm exists (P⊂ NP)

• it is reasonable to assume that for D there are no polynomial-time algorithm.

(Q1) What does difficult formally mean? Answer: NP-hard

13 / 17

Reduction and NP-hard
D, D' decision problems

 A
ll instances of D

All instances of D

Transformed
instances of D'

reductionI' I

'
P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D′ to D is a procedure that transforms every instance I′ of D′ to an instance I of D
such that
• the transformation can be done in polynomial time (= “easy”) and
• I has YES-answer if and only if I′ has YES-answer.

⇒ Every algorithm that solves D can be used to solve D′.

A dec. problem D is NP-hard if every problem D′ ∈ NP can be reduced to D.

If D is NP-hard, then

• every problem D′ ∈ NP can be considered as a “special case” of D.

• D is at least as difficult to solve as any other problem in NP.

• D is at least as difficult to solve as those problems in NP for which no polynomial-time algorithm exists (P⊂ NP)

• it is reasonable to assume that for D there are no polynomial-time algorithm.

(Q1) What does difficult formally mean? Answer: NP-hard

13 / 17

Reduction and NP-hard
D, D' decision problems

 A
ll instances of D

All instances of D

Transformed
instances of D'

reductionI' I

'
P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D′ to D is a procedure that transforms every instance I′ of D′ to an instance I of D
such that
• the transformation can be done in polynomial time (= “easy”) and
• I has YES-answer if and only if I′ has YES-answer.

⇒ Every algorithm that solves D can be used to solve D′.

A dec. problem D is NP-hard if every problem D′ ∈ NP can be reduced to D.

If D is NP-hard, then

• every problem D′ ∈ NP can be considered as a “special case” of D.

• D is at least as difficult to solve as any other problem in NP.

• D is at least as difficult to solve as those problems in NP for which no polynomial-time algorithm exists (P⊂ NP)

• it is reasonable to assume that for D there are no polynomial-time algorithm.

(Q1) What does difficult formally mean? Answer: NP-hard

13 / 17

Reduction and NP-hard
D, D' decision problems

 A
ll instances of D

All instances of D

Transformed
instances of D'

reductionI' I

'
P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D′ to D is a procedure that transforms every instance I′ of D′ to an instance I of D
such that
• the transformation can be done in polynomial time (= “easy”) and
• I has YES-answer if and only if I′ has YES-answer.

⇒ Every algorithm that solves D can be used to solve D′.

A dec. problem D is NP-hard if every problem D′ ∈ NP can be reduced to D.

If D is NP-hard, then

• every problem D′ ∈ NP can be considered as a “special case” of D.

• D is at least as difficult to solve as any other problem in NP.

• D is at least as difficult to solve as those problems in NP for which no polynomial-time algorithm exists (P⊂ NP)

• it is reasonable to assume that for D there are no polynomial-time algorithm.

(Q1) What does difficult formally mean? Answer: NP-hard

13 / 17

Reduction and NP-hard
D, D' decision problems

 A
ll instances of D

All instances of D

Transformed
instances of D'

reductionI' I

'
P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D′ to D is a procedure that transforms every instance I′ of D′ to an instance I of D
such that
• the transformation can be done in polynomial time (= “easy”) and
• I has YES-answer if and only if I′ has YES-answer.

⇒ Every algorithm that solves D can be used to solve D′.

A dec. problem D is NP-hard if every problem D′ ∈ NP can be reduced to D.

If D is NP-hard, then

• every problem D′ ∈ NP can be considered as a “special case” of D.

• D is at least as difficult to solve as any other problem in NP.

• D is at least as difficult to solve as those problems in NP for which no polynomial-time algorithm exists (P⊂ NP)

• it is reasonable to assume that for D there are no polynomial-time algorithm.

(Q1) What does difficult formally mean? Answer: NP-hard
13 / 17

Outline

• Main Ingredients

− Optimization problems vs. decision problems X
− Classes P and NP (P (NP)X
− Reduction and NP-hardness X
− NP-completeness

14 / 17

NP-complete

(Q1) What does difficult formally mean? Answer: NP-hard

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

Answer: Yes, NP-complete problems

What are these assumptions? Answer: P⊂ NP

A decision problem D is NP-complete if
• D ∈ NP
• D is NP-hard: every problem in NP can be reduced to D.

P

NP

NP-
complete

NP-
hard

NP-complete problems are the most difficult problems in NP.

15 / 17

NP-complete

(Q1) What does difficult formally mean? Answer: NP-hard

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
Answer: Yes, NP-complete problems
What are these assumptions? Answer: P⊂ NP

A decision problem D is NP-complete if
• D ∈ NP
• D is NP-hard: every problem in NP can be reduced to D.

P

NP

NP-
complete

NP-
hard

NP-complete problems are the most difficult problems in NP.

15 / 17

NP-complete

(Q1) What does difficult formally mean? Answer: NP-hard

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
Answer: Yes, NP-complete problems
What are these assumptions? Answer: P⊂ NP

A decision problem D is NP-complete if
• D ∈ NP
• D is NP-hard: every problem in NP can be reduced to D.

P

NP

NP-
complete

NP-
hard

NP-complete problems are the most difficult problems in NP.
15 / 17

NP-complete

Note, Languages and Decision problem can be seen as being “equivalent”, i.e., in the following
definition, we can use these terms interchangeably.

A decision problem D is NP-complete if

• D ∈ NP

• D is NP-hard: every problem in NP can be reduced to D.

In symbols,
∀D′ ∈ NP : D′ �p D

Q: How to show that EVERY problem in NP can be reduced to D?

A: There was a first problem “SAT” that was shown to be NP-complete:
Cook-Levin-Thm 1971 (without proof here)

⇒ Every problem D′ ∈ NP can be reduced to SAT.
⇒ If we can show for some problem D that SAT can be reduced to D

then every problem D′ ∈ NP can be reduced to D.
(�p is transitive)

∀D′ ∈ NP : D′ �p SAT and SAT�p D =⇒ ∀D′ ∈ NP : D′ �p D

16 / 17

Outline

• Main Ingredients

− Optimization problems vs. decision problems X
− Classes P and NP (P (NP)X
− Reduction and NP-hardness X
− NP-completeness X

. . . and now examples !

WHITEBOARD:

SAT �p 3-SAT �p CLIQUE �p VERTEX-COVER

3-SAT �p VERTEX-COLORING

3-SAT �p HAMILTONIAN PATH/CYCLE �p TSP

17 / 17

Outline

• Main Ingredients

− Optimization problems vs. decision problems X
− Classes P and NP (P (NP)X
− Reduction and NP-hardness X
− NP-completeness X

. . . and now examples !

WHITEBOARD:

SAT �p 3-SAT �p CLIQUE �p VERTEX-COVER

3-SAT �p VERTEX-COLORING

3-SAT �p HAMILTONIAN PATH/CYCLE �p TSP

17 / 17

