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Reminder: O-, ©- and 2-Notation

For positive functions f and g, we define
® g(n) € O(f(n)) = Jc>0,n9 > 0:Vn>ngy:g(n) <cf(n)
® g(n) € Q(f(n)) < 3c>0,n9 >0:Yn>ng:g(n) >cf(n)
* 8(n) € ©(f(n)) := g(n) € O(f(n)) and g(n) € Q(f(n)).

The notation g(n) = O(f(n)) is also very commonly used.

WHITEBOARD: merge sort vs insertion sort = runtime matters!
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Complexity

Question: Does there exist algorithms for every problem to solve it in polynomial time?
Answer

A1 NO, there are problems that cannot be solved by any algorithm [e.g. Halting
Problem]

A2 Many problems can be solved by alorithms but not in polynomial-time (under
reasonable assumptions)

A1 WHITEBOARD: unsolvable (undecidable) problem

— the halting problem
— almost all decision problems cannot be solved by algorithms.

A2 Theory of NP-completeness



Theory of NP-completeness: Literature

Computers and Intractability: A Guide to the Theory of NP-Completeness
by Michael R. Garey, David S. Johnson
Published January 15th 1979 by W. H. Freeman
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In a nutshell:

Aim: How difficult or easy is a problem that we want to solve?

Recap:

* There are problems that can be solved in polynomial time
(EASY, tractable problems)

* There are problems where no algorithms exist to solve them
in finite time (UNSOLVABLE)
e.g. Halting-problem [determine whether a given algorithm terminates]

Questions:

* What about problems that can be solved in finite time, say there is an
exponential-time algorithm with runtime ¢'(1.5"), but no polynomial-time
algorithm has been found so-far?

= Should we search further for polynomial-time algorithms?

Or could we stop searching, since there is some evidence that no
polynomial-time algorithm may exist?
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Easy vs. Difficult is not obvious!

¢ Main Ingredients

— Optimization problems vs. decision problems
Classes P and NP

— Reduction and NP-hardness
NP-completeness

We start with a brief overview of the main ingredients to answer these
questions.



Optimization Problems vs. Decision Problems




Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints



Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.



Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO



Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length < K for some K € N?



Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length < K for some K € N?

Memory Hook: Opt. Problem “easy” = Dec. Problem “easy”



Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length < K for some K € N?

Memory Hook: Opt. Problem “easy” = Dec. Problem “easy”
Dec. Problem “difficult” = Opt. Problem “difficult”



Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length < K for some K € N?

Memory Hook: Opt. Problem “easy” = Dec. Problem “easy”
Dec. Problem “difficult” = Opt. Problem “difficult”

To classify “difficulty”, decisions problems are used:

* To prove that an optimization problem is difficult, it suffices to show that the
corresponding decision problem is difficult.



Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length < K for some K € N?

Memory Hook: Opt. Problem “easy” = Dec. Problem “easy”
Dec. Problem “difficult” = Opt. Problem “difficult”

To classify “difficulty”, decisions problems are used:

* To prove that an optimization problem is difficult, it suffices to show that the
corresponding decision problem is difficult.

* Decision problems have a very natural, formal counterpart called “language”, as we
have seen in the section about “TM and languages that are accepted by TM”
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ATM M accepts w € £* <= M halts in state ggccp: for w as input.
L(M) :={w e X* | M accepts w}.
Note, if w € L(M)\ X*, then M with input w may never halt or rejects

A language L C X* is TM-recognizable <= there is TM M such that L = L(M)

A decision problem D can be viewed as a language encoding all yes-instances:
Lp = {all instances w € D with YES-answer}
Hence, any w € Lp \ ©* does not encode an instance of D or the answer is NO.

A TM M (equ. an algorithm) solves a decision problem D <= Lp = L(M) and it halts for
all w e X*. If this TM runs in polynomial-time, then D is said to be polynomial-time
solvable.

The TMs considered so-far are deterministic, i.e., each step of computation is uniquely
determined by the transition function & and the same input will always yield the same
computational steps.
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What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

guessing stage [Guess a solution oncel

non-deterministic part: If there is a YES-solution, then one of
these solutions is returned!

checking stage [ Verify if the solution is a YES-answer]
computed in a normal deterministic manner.

NP means “Non-deterministic Polynomial” (NOT: non-polynomial!)
Keep in mind that algorithms are essentially defined in terms of TM.
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Observation: P CNP

P-NP-Problem: P C NP or P =NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? ( = intractable problems)
What are these assumptions? Answer: P C NP
= There are problems in NP\ P # 0
These problems can be verified but not solved in polynomial time!

The formal theory of P and NP is defined in term of languages and Turing machines
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...is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
¢5)) cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest? ,7«”
d

YOU: 1coin =8g -
all coins =97760¢g

= 12220 * 8

Answer: YESSSS!|
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We reduced a counting problem to a weighting problem!

D, D' decision problems
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® it is reasonable to assume that for D there are no polynomial-time algorithm.
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D, D' decision problems

N instances ofp

P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

R instances or s

I

instance = specified input.

A reduction from D’ to D is a procedure that transforms every instance I’ of D’ to an instance I of D
such that

® the transformation can be done in polynomial time ( = “easy”) and
® ] has YES-answer if and only if I’ has YES-answer.

= Every algorithm that solves D can be used to solve D'.

A dec. problem D is NP-hard if every problem D’ € NP can be reduced to D.

If D is NP-hard, then

® cvery problem D' € NP can be considered as a “special case” of D.

® Dis at least as difficult to solve as any other problem in NP.

® Dis at least as difficult to solve as those problems in NP for which no polynomial-time algorithm exists (P C NP)

® it is reasonable to assume that for D there are no polynomial-time algorithm.

(Q1) What does difficult formally mean? Answer: NP-hard
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— Reduction and NP-hardness v/
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NP-complete

(Q1) What does difficult formally mean? Answer: NP-hard

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? ( = intractable problems)

Answer: Yes, NP-complete problems
What are these assumptions? Answer: P C NP

A decision problem D is NP-complete if
* DecNP
* Dis NP-hard: every problem in NP can be reduced to D.

NP-complete problems are the most difficult problems in NP.



NP-complete

Note, Languages and Decision problem can be seen as being “equivalent”, i.e., in the following
definition, we can use these terms interchangeably.

A decision problem D is NP-complete if
® DeNP

® D is NP-hard: every problem in NP can be reduced to D.

In symbols,
VD' €NP: D' <, D

Q: How to show that EVERY problem in NP can be reduced to D?

A: There was a first problem “SAT” that was shown to be NP-complete:
Cook-Levin-Thm 1971 (without proof here)

= Every problem D' € NP can be reduced to SAT.

= If we can show for some problem D that SAT can be reduced to D
then every problem D’ € NP can be reduced to D.
(2p Is transitive)

VD' € NP: D' <, SAT and SAT <, D = VD' e NP: D' <, D
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* Main Ingredients

Optimization problems vs. decision problems v
— Classes P and NP (P C NP)v’

Reduction and NP-hardness v/
NP-completeness v/

...and now examples !

WHITEBOARD:
SAT =<, 3-SAT =, CLIQUE =<, VERTEX-COVER
3-SAT =, VERTEX-COLORING
3-SAT =<, HAMILTONIAN PATH/CYCLE =, TSP



