Algorithms and Complexity
2. Complexity

Marc Hellmuth

University of Stockholm

Reminder: O-, ©- and 2-Notation

For positive functions f and g, we define
® g(n) € O(f(n)) = Jc>0,n9 > 0:Vn>ngy:g(n) <cf(n)
® g(n) € Q(f(n)) < 3c>0,n9 >0:Yn>ng:g(n) >cf(n)
* 8(n) € ©(f(n)) := g(n) € O(f(n)) and g(n) € Q(f(n)).

The notation g(n) = O(f(n)) is also very commonly used.

WHITEBOARD: merge sort vs insertion sort = runtime matters!

Complexity

Question: Does there exist algorithms for every problem to solve it in polynomial time?

Complexity

Question: Does there exist algorithms for every problem to solve it in polynomial time?
Answer

A1 NO, there are problems that cannot be solved by any algorithm [e.g. Halting
Problem]

Complexity

Question: Does there exist algorithms for every problem to solve it in polynomial time?
Answer

A1 NO, there are problems that cannot be solved by any algorithm [e.g. Halting
Problem]

A2 Many problems can be solved by alorithms but not in polynomial-time (under
reasonable assumptions)

Complexity

Question: Does there exist algorithms for every problem to solve it in polynomial time?
Answer

A1 NO, there are problems that cannot be solved by any algorithm [e.g. Halting
Problem]

A2 Many problems can be solved by alorithms but not in polynomial-time (under
reasonable assumptions)

A1 WHITEBOARD: unsolvable (undecidable) problem

— the halting problem
— almost all decision problems cannot be solved by algorithms.

A2 Theory of NP-completeness

Theory of NP-completeness: Literature

Computers and Intractability: A Guide to the Theory of NP-Completeness
by Michael R. Garey, David S. Johnson
Published January 15th 1979 by W. H. Freeman

In a nutshell:

Aim: How difficult or easy is a problem that we want to solve?

In a nutshell:

Aim: How difficult or easy is a problem that we want to solve?

Recap:

* There are problems that can be solved in polynomial time
(EASY, tractable problems)

In a nutshell:

Aim: How difficult or easy is a problem that we want to solve?

Recap:

* There are problems that can be solved in polynomial time
(EASY, tractable problems)

* There are problems where no algorithms exist to solve them
in finite time (UNSOLVABLE)
e.g. Halting-problem [determine whether a given algorithm terminates]

In a nutshell:

Aim: How difficult or easy is a problem that we want to solve?

Recap:

* There are problems that can be solved in polynomial time
(EASY, tractable problems)

* There are problems where no algorithms exist to solve them
in finite time (UNSOLVABLE)
e.g. Halting-problem [determine whether a given algorithm terminates]

Questions:

* What about problems that can be solved in finite time, say there is an
exponential-time algorithm with runtime ¢'(1.5"), but no polynomial-time
algorithm has been found so-far?

In a nutshell:

Aim: How difficult or easy is a problem that we want to solve?

Recap:

* There are problems that can be solved in polynomial time
(EASY, tractable problems)

* There are problems where no algorithms exist to solve them
in finite time (UNSOLVABLE)
e.g. Halting-problem [determine whether a given algorithm terminates]

Questions:

* What about problems that can be solved in finite time, say there is an
exponential-time algorithm with runtime ¢'(1.5"), but no polynomial-time
algorithm has been found so-far?

= Should we search further for polynomial-time algorithms?

Or could we stop searching, since there is some evidence that no
polynomial-time algorithm may exist?

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

N7

Easy vs. Difficult is not obvious!

”

Very small modifications of the problem formulation can make an “easy

problem to a “difficult” one.
Aﬁ/

Find a shortest path between A and B under the assumption that all edges e
have weight

Easy vs. Difficult is not obvious!

”

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

ﬁ

N

Find a shortest path between A and B under the assumption that all edges e
have weight

w(e) =1

Easy vs. Difficult is not obvious!

”

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

ﬁ

7

Find a shortest path between A and B under the assumption that all edges e
have weight

w(e) =1

(solvable in polynomial time)

EASY!

Easy vs. Difficult is not obvious!

”

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

ﬁ — -1 —
)

<TA—— %
Va7

Find a shortest path between A and B under the assumption that all edges e
have weight

w(e) =1 w(e) =-1
(solvable in polynomial time)

EASY!

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

=7

Find a shortest path between A and B under the assumption that all edges e
have weight

w(e) =1 w(e) =-1
(solvable in polynomial time) Up to now, only exponential-time
algorithms are known!

EASY!

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

=7

Find a shortest path between A and B under the assumption that all edges e
have weight

w(e) =1 w(e) =-1
(solvable in polynomial time) Up to now, only exponential-time
algorithms are known!

EASY! DIFFICULT? “"

Easy vs. Difficult is not obvious!

”

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

N7

Find a coloring of the houses such that neighbors have different colors

Easy vs. Difficult is not obvious!

”

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

N7

Find a coloring of the houses such that neighbors have different colors

Easy vs. Difficult is not obvious!

”

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

N7

Find a coloring of the houses such that neighbors have different colors

with 2 colors

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

N7

Find a coloring of the houses such that neighbors have different colors

with 2 colors
solvable in polynomial time

EASY!

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

‘\<\/"Z

Find a coloring of the houses such that neighbors have different colors

with 2 colors with 3 colors
solvable in polynomial time

EASY!

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

‘\<\/"Z

Find a coloring of the houses such that neighbors have different colors

with 2 colors with 3 colors
solvable in polynomial time

EASY!

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

A —
\\ﬁ 7/
Find a coloring of the houses such that neighbors have different colors
with 2 colors with 3 colors
solvable in polynomial time Up to now, only exponential-time

algorithms are known!

EASY!

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

A\<\/ﬁ‘r{7

Find a coloring of the houses such that neighbors have different colors

with 2 colors with 3 colors

solvable in polynomial time Up to now, only exponential-time
algorithms are known!

EASY! DIFFICULT? &

Easy vs. Difficult is not obvious!

”

Very small modifications of the problem formulation can make an “easy
problem to a “difficult” one.

N7

It doesn’t seem to be a simple task to distinguish between difficult and easy!

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

N7

It doesn’t seem to be a simple task to distinguish between difficult and easy!

(Q1) What does difficult formally mean?

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

N7

It doesn’t seem to be a simple task to distinguish between difficult and easy!

(Q1) What does difficult formally mean?

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

Easy vs. Difficult is not obvious!

Very small modifications of the problem formulation can make an “easy”
problem to a “difficult” one.

N7

It doesn’t seem to be a simple task to distinguish between difficult and easy!

(Q1) What does difficult formally mean?

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

What are these assumptions?

Easy vs. Difficult is not obvious!

¢ Main Ingredients

— Optimization problems vs. decision problems
Classes P and NP

— Reduction and NP-hardness
NP-completeness

We start with a brief overview of the main ingredients to answer these
questions.

Optimization Problems vs. Decision Problems

Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO

Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length < K for some K € N?

Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length < K for some K € N?

Memory Hook: Opt. Problem “easy” = Dec. Problem “easy”

Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length < K for some K € N?

Memory Hook: Opt. Problem “easy” = Dec. Problem “easy”
Dec. Problem “difficult” = Opt. Problem “difficult”

Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length < K for some K € N?

Memory Hook: Opt. Problem “easy” = Dec. Problem “easy”
Dec. Problem “difficult” = Opt. Problem “difficult”

To classify “difficulty”, decisions problems are used:

* To prove that an optimization problem is difficult, it suffices to show that the
corresponding decision problem is difficult.

Optimization Problems vs. Decision Problems

¢ An optimization problem has as solution one that satisfies pre-described
optimality constraints

Shortest Path: Find between two houses A and B a path of min-length.

¢ A decision problem has as solution only an answer YES or NO

Shortest Path: Does there exist a path between two houses A and B
of length < K for some K € N?

Memory Hook: Opt. Problem “easy” = Dec. Problem “easy”
Dec. Problem “difficult” = Opt. Problem “difficult”

To classify “difficulty”, decisions problems are used:

* To prove that an optimization problem is difficult, it suffices to show that the
corresponding decision problem is difficult.

* Decision problems have a very natural, formal counterpart called “language”, as we
have seen in the section about “TM and languages that are accepted by TM”

Outline

¢ Main Ingredients

— Optimization problems vs. decision problems v/
— Classes P and NP

— Reduction and NP-hardness

— NP-completeness

TM and Algorithms

ATM M accepts w € £* <= M halts in state ggccp: for w as input.
L(M) :={w e X* | M accepts w}.
Note, if w € L(M)\ X*, then M with input w may never halt or rejects

TM and Algorithms

ATM M accepts w € £* <= M halts in state ggccp: for w as input.
L(M) :={w e X* | M accepts w}.
Note, if w € L(M)\ X*, then M with input w may never halt or rejects

A language L C X* is TM-recognizable <= there is TM M such that L = L(M)

TM and Algorithms

ATM M accepts w € £* <= M halts in state ggccp: for w as input.
L(M) :={w e X* | M accepts w}.
Note, if w € L(M)\ X*, then M with input w may never halt or rejects

A language L C X* is TM-recognizable <= there is TM M such that L = L(M)
A decision problem D can be viewed as a language encoding all yes-instances:

Lp = {all instances w € D with YES-answer}
Hence, any w € Lp \ ©* does not encode an instance of D or the answer is NO.

TM and Algorithms

ATM M accepts w € £* <= M halts in state ggccp: for w as input.
L(M) :={w e X* | M accepts w}.
Note, if w € L(M)\ X*, then M with input w may never halt or rejects

A language L C X* is TM-recognizable <= there is TM M such that L = L(M)

A decision problem D can be viewed as a language encoding all yes-instances:
Lp = {all instances w € D with YES-answer}
Hence, any w € Lp \ ©* does not encode an instance of D or the answer is NO.

A TM M (equ. an algorithm) solves a decision problem D <= Lp = L(M) and it halts for
all w e X*. If this TM runs in polynomial-time, then D is said to be polynomial-time
solvable.

TM and Algorithms

ATM M accepts w € £* <= M halts in state ggccp: for w as input.
L(M) :={w e X* | M accepts w}.
Note, if w € L(M)\ X*, then M with input w may never halt or rejects

A language L C X* is TM-recognizable <= there is TM M such that L = L(M)

A decision problem D can be viewed as a language encoding all yes-instances:
Lp = {all instances w € D with YES-answer}
Hence, any w € Lp \ ©* does not encode an instance of D or the answer is NO.

A TM M (equ. an algorithm) solves a decision problem D <= Lp = L(M) and it halts for
all w e X*. If this TM runs in polynomial-time, then D is said to be polynomial-time
solvable.

The TMs considered so-far are deterministic, i.e., each step of computation is uniquely
determined by the transition function & and the same input will always yield the same
computational steps.

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}

What is a non-deterministic algorithm ?

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}

What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}

What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

guessing stage [Guess a solution oncel

non-deterministic part: If there is a YES-solution, then one of
these solutions is returned!

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}

What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

guessing stage [Guess a solution oncel

non-deterministic part: If there is a YES-solution, then one of
these solutions is returned!

checking stage [Verify if the solution is a YES-answer]
computed in a normal deterministic manner.

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

guessing stage [Guess a solution oncel

non-deterministic part: If there is a YES-solution, then one of
these solutions is returned!

checking stage [Verify if the solution is a YES-answer]
computed in a normal deterministic manner.

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

What is a non-deterministic algorithm ?

A non-deterministic algorithm consists of two separate stages:

guessing stage [Guess a solution oncel

non-deterministic part: If there is a YES-solution, then one of
these solutions is returned!

checking stage [Verify if the solution is a YES-answer]
computed in a normal deterministic manner.

NP means “Non-deterministic Polynomial” (NOT: non-polynomial!)
Keep in mind that algorithms are essentially defined in terms of TM.

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: Shortest Path
—_—
‘1 ﬁ1/g
1\\ ‘ 1 /
MTT A

Question: Does there exist a path of length <4 from A to B?

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: Shortest Path
P U
‘1 ﬁ1/g
1\\ ﬁ 1 /
AMTT NA

Question: Does there exist a path of length <4 from A to B?
guessing stage [Guess a solution once]

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: Shortest Path
P U
‘1 ﬁ1/g
\ ﬁ 1 /
AvY

AMTT N

1

Question: Does there exist a path of length <4 from A to B?
guessing stage [Guess a solution once]
checking stage [Verify if the solution is a YES-answer]

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: Shortest Path € NP
—_—
‘1 ‘1/9
\ ﬁ 1 /
Av

AMTT N

1

Question: Does there exist a path of length <4 from A to B?
guessing stage [Guess a solution once]
checking stage [Verify if the solution is a YES-answer]

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: 3-coloring
\ //
ﬁ/ N

Question: Does there exist a 3-coloring?

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: 3-coloring

Question: Does there exist a 3-coloring?
guessing stage [Guess a solution once]

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: 3-coloring
S
\ /ﬁ\ﬁ{/

Question: Does there exist a 3-coloring?
guessing stage [Guess a solution once]
checking stage [Verify if the solution is a YES-answer]

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Example: 3-coloring € NP
S
\ /ﬁ\ﬁ{/

Question: Does there exist a 3-coloring?
guessing stage [Guess a solution once]
checking stage [Verify if the solution is a YES-answer]

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P CNP

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P CNP

P-NP-Problem: P C NP or P =NP?

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P CNP

P-NP-Problem: P C NP or P =NP?

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P CNP

P-NP-Problem: P C NP or P =NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P CNP

P-NP-Problem: P C NP or P =NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

What are these assumptions?

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P CNP

P-NP-Problem: P C NP or P =NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

What are these assumptions? Answer: P C NP

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P CNP

P-NP-Problem: P C NP or P =NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
What are these assumptions? Answer: P C NP

= There are problems in NP\ P # 0
These problems can be verified but not solved in polynomial time!

P vs. NP

P = {dec. probl. that can be solved by deterministic alg. in polynomial time}
= {dec. probl. solvable in polynomial time }

NP = {dec. probl. that can be solved by non-deterministic alg. in polynomial time}
= {dec. probl. verifiable in polynomial time}

Observation: P CNP

P-NP-Problem: P C NP or P =NP?

If P = NP, then verifying a solution is as easy as finding a solution
(quite unlikely, but still unsolved!)

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)
What are these assumptions? Answer: P C NP
= There are problems in NP\ P # 0
These problems can be verified but not solved in polynomial time!

The formal theory of P and NP is defined in term of languages and Turing machines

Outline

¢ Main Ingredients

— Optimization problems vs. decision problems v/
— Classes P and NP (P C NP)v

— Reduction and NP-hardness

— NP-completeness

Reduction ...
...is about transforming one problem into another problem

Reduction ...
...is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
¢5)) cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest?

Reduction ...
...is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
¢5)) cannot answer the following question correctly
within 2 minutes:

Reduction ...
...is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest?

Reduction ...
...is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest? %
N

YOU: 1coin =8¢

Reduction ...
...is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
¢5)) cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest? %’
:// i

YOU: 1coin =8¢
all coins =97760¢g
= 12220 * 8g

Reduction ...
...is about transforming one problem into another problem

ARRR, we leave you at this lonely island if you
¢5)) cannot answer the following question correctly
within 2 minutes:

Are there less then 12222 coins in the chest? ,7«”
d

YOU: 1coin =8g -
all coins =97760¢g

= 12220 * 8

Answer: YESSSS!|

Reduction . ..

...is about transforming one problem into another problem

We reduced a counting problem to a weighting problem!

Reduction . ..

...is about transforming one problem into another problem

o P

$

=

s
reduction > /
\

We reduced a counting problem to a weighting problem!

D, D' decision problems

=(™ K= . — (2T =
£ =(5,K=12222) reduction)z—(5.L=8*12222)

D' (number coins) D (weight of items)
IN: Set of coins & integer K IN: ltem i & integer L
Q: Number of coins <K ? Q: Weight(i))< L?

Reduction . ..

...is about transforming one problem into another problem

o P

$

=

s
reduction > /
\

We reduced a counting problem to a weighting problem!

D, D' decision problems

I=(3.K) __redustion > 4= 5L=fK)
D' (number coins) D (weight of items)
IN: Set of coins & integer K IN: ltem i & integer L
Q: Number of coins <K ? Q: Weight(i))< L?

Reduction . ..

.is about transforming one problem into another problem

ay

~ J\l‘) reduction

D, D' decision problems

A instances of 2

1=(E8.K)

~
." instances of D' s

reduction I (jL (9%

D' (number coins) D (weight of items)
IN: Set of coins & integer K IN: Item i & integer L
Q: Number of coins <K ? Q: Weight(i))< L?

Reduction

D, D' decision problems A instances o7 5

SwnsencesoryN . fransformed P = {dec. probl. solvable in polynomial time}

r NP = {dec. probl. verifiable in polynomial time}

Reduction

D, D' decision problems A instances o7 5

S nstances o7~ P = {dec. probl. solvable in polynomial time}

r NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D’ to D is a procedure that transforms every instance I’ of D’ to an instance I of D
such that

® the transformation can be done in polynomial time (= “easy”) and
®] has YES-answer if and only if I’ has YES-answer.

Reduction

D, D' decision problems A instances o7 5

SwnsencesoryN . fransformed P = {dec. probl. solvable in polynomial time}

r NP = {dec. probl. verifiable in polynomial time}

instance = specified input.

A reduction from D’ to D is a procedure that transforms every instance I’ of D’ to an instance I of D
such that

® the transformation can be done in polynomial time (= “easy”) and
®] has YES-answer if and only if I’ has YES-answer.

= Every algorithm that solves D can be used to solve D'.

Reduction and NP-hard

D, D' decision problems A instances o7 5

P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

' instances of 5

I

instance = specified input.
A reduction from D’ to D is a procedure that transforms every instance I’ of D’ to an instance I of D
such that

® the transformation can be done in polynomial time (= “easy”) and
®] has YES-answer if and only if I’ has YES-answer.

= Every algorithm that solves D can be used to solve D'.

A dec. problem D is NP-hard if every problem D’ € NP can be reduced to D.

Reduction and NP-hard

D, D' decision problems A instances o7 5

P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

R instances or s

I

instance = specified input.
A reduction from D’ to D is a procedure that transforms every instance I’ of D’ to an instance I of D
such that

® the transformation can be done in polynomial time (= “easy”) and
®] has YES-answer if and only if I’ has YES-answer.

= Every algorithm that solves D can be used to solve D'.
A dec. problem D is NP-hard if every problem D’ € NP can be reduced to D.

If D is NP-hard, then

Reduction and NP-hard

D, D' decision problems A instances o7 5

P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

R instances or s

I

instance = specified input.
A reduction from D’ to D is a procedure that transforms every instance I’ of D’ to an instance I of D
such that

® the transformation can be done in polynomial time (= “easy”) and
®] has YES-answer if and only if I’ has YES-answer.

= Every algorithm that solves D can be used to solve D'.
A dec. problem D is NP-hard if every problem D’ € NP can be reduced to D.

If D is NP-hard, then

® cvery problem D' € NP can be considered as a “special case” of D.

Reduction and NP-hard

D, D' decision problems

N instances of)
"""""" P = {dec. probl. solvable in polynomial time}

NP = {dec. probl. verifiable in polynomial time}

R instances or s

I

instance = specified input.
A reduction from D’ to D is a procedure that transforms every instance I’ of D’ to an instance I of D
such that

® the transformation can be done in polynomial time (= “easy”) and
®] has YES-answer if and only if I’ has YES-answer.

= Every algorithm that solves D can be used to solve D'.
A dec. problem D is NP-hard if every problem D’ € NP can be reduced to D.

If D is NP-hard, then

® cvery problem D' € NP can be considered as a “special case” of D.

® Dis at least as difficult to solve as any other problem in NP.

Reduction and NP-hard

D, D' decision problems

N instances ofp
"""""" P = {dec. probl. solvable in polynomial time}

NP = {dec. probl. verifiable in polynomial time}

R instances or s

I

instance = specified input.
A reduction from D’ to D is a procedure that transforms every instance I’ of D’ to an instance I of D

such that
® the transformation can be done in polynomial time (= “easy”) and

®] has YES-answer if and only if I’ has YES-answer.

= Every algorithm that solves D can be used to solve D'.
A dec. problem D is NP-hard if every problem D’ € NP can be reduced to D.

If D is NP-hard, then
® cvery problem D' € NP can be considered as a “special case” of D.

® Dis at least as difficult to solve as any other problem in NP.
® Dis at least as difficult to solve as those problems in NP for which no polynomial-time algorithm exists (P C NP)

Reduction and NP-hard

D, D' decision problems

N instances ofp

.=~ "Fransformed ~~ - P = {dec. probl. solvable in polynomial time}

R instances or s

r NP = {dec. probl. verifiable in polynomial time}

instance = specified input.
A reduction from D’ to D is a procedure that transforms every instance I’ of D’ to an instance I of D
such that

® the transformation can be done in polynomial time (= “easy”) and
®] has YES-answer if and only if I’ has YES-answer.

= Every algorithm that solves D can be used to solve D'.
A dec. problem D is NP-hard if every problem D’ € NP can be reduced to D.

If D is NP-hard, then

® cvery problem D' € NP can be considered as a “special case” of D.
® Dis at least as difficult to solve as any other problem in NP.
® Dis at least as difficult to solve as those problems in NP for which no polynomial-time algorithm exists (P C NP)

® it is reasonable to assume that for D there are no polynomial-time algorithm.

Reduction and NP-hard

D, D' decision problems

N instances ofp

P = {dec. probl. solvable in polynomial time}
NP = {dec. probl. verifiable in polynomial time}

R instances or s

I

instance = specified input.

A reduction from D’ to D is a procedure that transforms every instance I’ of D’ to an instance I of D
such that

® the transformation can be done in polynomial time (= “easy”) and
®] has YES-answer if and only if I’ has YES-answer.

= Every algorithm that solves D can be used to solve D'.

A dec. problem D is NP-hard if every problem D’ € NP can be reduced to D.

If D is NP-hard, then

® cvery problem D' € NP can be considered as a “special case” of D.

® Dis at least as difficult to solve as any other problem in NP.

® Dis at least as difficult to solve as those problems in NP for which no polynomial-time algorithm exists (P C NP)

® it is reasonable to assume that for D there are no polynomial-time algorithm.

(Q1) What does difficult formally mean? Answer: NP-hard

Outline

¢ Main Ingredients

— Optimization problems vs. decision problems v/
— Classes P and NP (P C NP)v

— Reduction and NP-hardness v/

— NP-completeness

NP-complete

(Q1) What does difficult formally mean? Answer: NP-hard

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

What are these assumptions? Answer: P C NP

NP-complete

(Q1) What does difficult formally mean? Answer: NP-hard

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

Answer: Yes, NP-complete problems
What are these assumptions? Answer: P C NP

A decision problem D is NP-complete if
* DecNP
* Dis NP-hard: every problem in NP can be reduced to D.

NP-complete

(Q1) What does difficult formally mean? Answer: NP-hard

(Q2) Are there problems for which no polynomial-time algorithm exists
under reasonable assumptions? (= intractable problems)

Answer: Yes, NP-complete problems
What are these assumptions? Answer: P C NP

A decision problem D is NP-complete if
* DecNP
* Dis NP-hard: every problem in NP can be reduced to D.

NP-complete problems are the most difficult problems in NP.

NP-complete

Note, Languages and Decision problem can be seen as being “equivalent”, i.e., in the following
definition, we can use these terms interchangeably.

A decision problem D is NP-complete if
® DeNP

® D is NP-hard: every problem in NP can be reduced to D.

In symbols,
VD' €NP: D' <, D

Q: How to show that EVERY problem in NP can be reduced to D?

A: There was a first problem “SAT” that was shown to be NP-complete:
Cook-Levin-Thm 1971 (without proof here)

= Every problem D' € NP can be reduced to SAT.

= If we can show for some problem D that SAT can be reduced to D
then every problem D’ € NP can be reduced to D.
(2p Is transitive)

VD' € NP: D' <, SAT and SAT <, D = VD' e NP: D' <, D

Outline

* Main Ingredients

Optimization problems vs. decision problems v
— Classes P and NP (P C NP)v’

Reduction and NP-hardness v/
NP-completeness v

Outline

* Main Ingredients

Optimization problems vs. decision problems v
— Classes P and NP (P C NP)v’

Reduction and NP-hardness v/
NP-completeness v/

...and now examples !

WHITEBOARD:
SAT =<, 3-SAT =, CLIQUE =<, VERTEX-COVER
3-SAT =, VERTEX-COLORING
3-SAT =<, HAMILTONIAN PATH/CYCLE =, TSP

