
Algorithms and Complexity
3. Shortest Paths

Marc Hellmuth

University of Stockholm



Shortest Path

A path in a (di)graph G = (V,E) is a sequence < v0, . . . ,vk > of vertices in V
such that (vi,vi+1) ∈ E, 0≤ i≤ k−1 (also called v0-vk-path)

If for a path < v0, . . . ,vk > it holds that vi 6= vj, 0≤ i < j≤ k, then the path is simple

Length of path < v0, . . . ,vk > is k (=number of edges).

If we have a weighting function w : E→ R, then the length of a path < v0, . . . ,vk > is
∑

k−1
i=0 w(ei) where ei = (vi,vi+1)

The distance δ between vertices u,v ∈ V is

δ (u,v) =

{
length of shortest u-v-path if it exists
∞ else

The aim is to find shortest paths, however, the complexity of this problem heavily
depends on the weighting function w.
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Difficult shortest path problems

Problem: Shortest-Simple-Path (SSP):
input: (di)graph G = (V,E), weighting w : E→ R, k ∈ Z
question: Is there a simple path in G of length ≤ k ?

Theorem
SSP is NP-complete

WHITEBOARD: proof.

Now, simple shortest path problems.
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Lemma 3.1
Let G = (V,E) be a digraph with weighting function w : E→ R. Let < v0, . . . ,vk > be
shortest v0− vk path in G. Then, for all 1≤ i, j≤ k it holds that < vi, . . . ,vj > is a shortest
vi− vj path in G.

WHITEBOARD: proof.

A (di)graph G = (V,E) has a conservative weighting function w : E→ R, if G contains
no cycles of negative length.

=⇒ In this case, we can w.l.o.g. consider simple paths

WHITEBOARD: example.
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Basic functions

PRINT PATH(digraph G vertices s,v) runtime O(|V(G)|)
1: if v = s then print “s”
2: else if v.π = NIL then print “@ s− v path” // x.π = predecessor of x in s− x path

3: else
4: PRINT PATH(G,s,v.π)
5: print “v”

INIT SINGLE SOURCE(digraph G, sourse s) runtime O(|V(G)|)
1: for each vertex v of G do
2: v.d = ∞ // x.d = upper bound on distance from s to x

3: v.pi =NIL
4: s.d = 0

RELAX(vertices u,v, weight fct w) runtime O(|1|)
1: if v.d > u.d+w(u,v) then
2: v.π = u
3: v.d = u.d+w(uv)
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Properties of basic functions
digraph G = (V,E), weight w : E→ R, sourse s (proofs WHITEBOARD)

Lemma 3.2 ∆-inequality
δ (s,v)≤ δ (s.u)+w(u,v) for all (u,v) ∈ E.

Lemma 3.3 upper bound property
After call of INIT SINGLE SOURCE(G, s) we always have v.d ≥ δ (s,v) ∀v ∈ V and this
property is maintained over any sequence of calls of RELAX.
In particular, if v.d = δ (s,v), then v.d never changes again.

Corollary 3.4 No-path-property
If there is no s− v path, then after call of INIT SINGLE SOURCE(G, s) v.d = δ (s,v) = ∞

and and this property is maintained over any sequence of calls of RELAX.
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Properties of basic functions
digraph G = (V,E), weight w : E→ R, sourse s (proofs WHITEBOARD)

Lemma 3.5 Convergence-property
Let P = s u→ v shortest s− v path in G for some u,v ∈ V. Suppose that G is initialized
by INIT SINGLE SOURCE(G, s) and then a sequence of calls of RELAX are applied that
includes the call RELAX(u,v, w).
If u.d = δ (s,u) at any time prior to this call, then v.d = δ (s,v) at all times after the call.

Lemma 3.6 Path-Relaxation-property
Let P =< s = v0, . . . ,vk > any shortest s− vk path in G. If G is initialized by
INIT SINGLE SOURCE(G, s) and then a sequence of calls of RELAX are applied that
includes, in order, the calls RELAX(v0,v1, w), . . . , RELAX(vk−1,vk, w), then vk.d = δ (s,vk)
at all times after the call.
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Bellmann-Ford-Algorithm
Solves single sourse shortest path problem

BELLMANN-FORD(digraph G, weight fct w, sourse s)
1: INIT SINGLE SOURCE(G, s)
2: for i = 1, . . . , |V|−1 do
3: for every edge (u,v) ∈ E do
4: RELAX(u,v, w)

Theorem 3.7
BELLMANN-FORD(G = (V,E), w, s) with conservative weighting function w : E→ R
correctly computes all distances from s to all v ∈ V in O(|V||E|) time.
[a shortest path can then be printed with PRINT PATH(digraph G vertices s,v) for all v ∈ V]

WHITEBOARD: proof
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Dijkstra’s-Algorithm
Solves single sourse shortest path problem
DIJKSTRA(digraph G, weight fct w, sourse s)
1: INIT SINGLE SOURCE(G, s)
2: S = /0
3: Q = V(G)
4: while Q 6= /0 do
5: u = EXTRACT MIN(Q)
6: S = S∪{u}
7: for all v ∈ N+(u) do
8: RELAX(u,v, w)

Theorem 3.8
DIJKSTRA(G = (V,E), w, s) with nonnegative weighting function w : E→ R≥0 correctly
computes all distances from s to all v ∈ V in O(|V|f (|V|)+ |E|) time where f (|V|) is
runtime of EXTRACT MIN(Q).
[a shortest path can then be printed with PRINT PATH(digraph G vertices s,v) for all v ∈ V]
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Trivially EXTRACT MIN(Q) runs in O(|V|) time. However, using efficient datastructures
(Min-priority queue and Fibonacci Heap) this runtime can be improved to O(log2(|V|))
time, in which case Dikstra is faster than Bellmann-Ford 8 / 9



Floyd-Warshall-Algorithm
Solves many sourses shortest path problem

Later in Part “Dynamic Programming”
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