Algorithms and Complexity

3. Shortest Paths

Marc Hellmuth

University of Stockholm

Shortest Path

A **path** in a (di)graph G=(V,E) is a sequence $< v_0,\dots,v_k>$ of vertices in V such that $(v_i,v_{i+1})\in E,\,0\leq i\leq k-1$ (also called v_0 - v_k -path)

If for a path $< v_0, \dots, v_k >$ it holds that $v_i \neq v_j, 0 \leq i < j \leq k$, then the path is **simple**

Length of path $\langle v_0, \dots, v_k \rangle$ is k (=number of edges).

If we have a weighting function $w: E \to \mathbb{R}$, then the length of a path $< v_0, \dots, v_k >$ is $\sum_{i=0}^{k-1} w(e_i)$ where $e_i = (v_i, v_{i+1})$

The **distance** δ between vertices $u, v \in V$ is

$$\delta(u,v) = \begin{cases} \text{length of shortest } u\text{-}v\text{-path} & \text{if it exists} \\ \infty & \text{else} \end{cases}$$

The aim is to find shortest paths, however, the complexity of this problem heavily depends on the weighting function w.

Difficult shortest path problems

Problem: Shortest-Simple-Path (SSP):

input: (di)graph G = (V, E), weighting $w \colon E \to \mathbb{R}, \ k \in \mathbb{Z}$ question: Is there a simple path in G of length $\leq k$?

Theorem

SSP is NP-complete

WHITEBOARD: proof.

Now, simple shortest path problems.

Lemma 3.1

Let G = (V, E) be a digraph with weighting function $w : E \to \mathbb{R}$. Let $< v_0, \dots, v_k >$ be shortest $v_0 - v_k$ path in G. Then, for all $1 \le i, j \le k$ it holds that $< v_i, \dots, v_j >$ is a shortest $v_i - v_i$ path in G.

WHITEBOARD: proof.

A (di)graph G=(V,E) has a **conservative** weighting function $w\colon E\to \mathbb{R}$, if G contains no cycles of negative length.

 \implies In this case, we can w.l.o.g. consider simple paths

WHITEBOARD: example.

Basic functions

```
PRINT_PATH(digraph G vertices s, v)
1: if v = s then print "s"
2: else if v.\pi = NIL then print "\nexists s - v path"
3: else
4: PRINT_PATH(G, s, v.\pi)
5: print "v"
INIT_SINGLE_SOURCE(digraph G, sourse s)
1: for each vertex v of G do
2: v.d = \infty
3: v.pi = NIL
4: s.d = 0
RELAX(vertices u, v, weight fct w)
1: if v.d > u.d + w(u, v) then
2: v.\pi = u
3: v.d = u.d + w(uv)
```

runtime O(|V(G)|)

 $// x.\pi = \text{predecessor of } x \text{ in } s - x \text{ path}$

runtime O(|V(G)|)

// x.d = upper bound on distance from s to x

runtime O(|1|)

Properties of basic functions

digraph G = (V, E), weight $w: E \to \mathbb{R}$, sourse s (proofs WHITEBOARD)

Lemma 3.2 ∆-inequality

 $\delta(s,v) \leq \delta(s.u) + w(u,v)$ for all $(u,v) \in E$.

Lemma 3.3 upper bound property

After call of INIT_SINGLE_SOURCE(G, s) we always have $v.d \ge \delta(s,v)$ $\forall v \in V$ and this property is maintained over any sequence of calls of Relax. In particular, if $v.d = \delta(s,v)$, then v.d never changes again.

Corollary 3.4 No-path-property

If there is no s-v path, then after call of INIT_SINGLE_SOURCE(G, s) $v.d=\delta(s,v)=\infty$ and and this property is maintained over any sequence of calls of RELAX.

Properties of basic functions

digraph G = (V, E), weight $w: E \to \mathbb{R}$, sourse s (proofs WHITEBOARD)

Lemma 3.5 Convergence-property

Let $P = s \leadsto u \to v$ shortest s - v path in G for some $u, v \in V$. Suppose that G is initialized by INIT_SINGLE_SOURCE(G, s) and then a sequence of calls of Relax are applied that includes the call Relax(u, v, w).

If $u.d = \delta(s, u)$ at any time prior to this call, then $v.d = \delta(s, v)$ at all times after the call.

Lemma 3.6 Path-Relaxation-property

Let $P = \langle s = v_0, \dots, v_k \rangle$ any shortest $s - v_k$ path in G. If G is initialized by INIT_SINGLE_SOURCE(G, s) and then a sequence of calls of Relax are applied that includes, in order, the calls Relax(v_0, v_1, w), ..., Relax(v_{k-1}, v_k, w), then $v_k.d = \delta(s, v_k)$ at all times after the call.

Bellmann-Ford-Algorithm

Solves single sourse shortest path problem

```
Bellmann-Ford(digraph G, weight fct w, sourse s)
```

```
1: INIT_SINGLE_SOURCE(G, s)
```

2: for
$$i = 1, ..., |V| - 1$$
 do

3: **for** every edge $(u, v) \in E$ **do**

4: RELAX(u, v, w)

Bellmann-Ford-Algorithm

Solves single sourse shortest path problem

```
Bellmann-Ford(digraph G, weight fct w, sourse s)
```

```
1: INIT_SINGLE_SOURCE(G, s)
```

2: **for**
$$i = 1, ..., |V| - 1$$
 do

3: **for** every edge $(u, v) \in E$ **do**

4: RELAX(u, v, w)

Theorem 3.7

BELLMANN-FORD(G=(V,E),w,s) with conservative weighting function $w\colon E\to\mathbb{R}$ correctly computes all distances from s to all $v\in V$ in O(|V||E|) time. [a shortest path can then be printed with PRINT_PATH(digraph G vertices s,v) for all $v\in V$]

WHITEBOARD: proof

Dijkstra's-Algorithm

8:

Solves single sourse shortest path problem

```
DIJKSTRA(digraph G, weight fct w, sourse s)

1: INIT_SINGLE_SOURCE(G, s)

2: S = \emptyset

3: Q = V(G)

4: while Q \neq \emptyset do

5: u = \text{EXTRACT\_MIN}(Q)

6: S = S \cup \{u\}

7: for all v \in N^+(u) do
```

Relax(u, v, w)

Dijkstra's-Algorithm

Solves single sourse shortest path problem

```
DIJKSTRA(digraph G, weight fot w, sourse s)

1: INIT_SINGLE_SOURCE(G, s)

2: S = \emptyset

3: Q = V(G)

4: while Q \neq \emptyset do

5: u = \text{EXTRACT\_MIN}(Q)

6: S = S \cup \{u\}

7: for all v \in N^+(u) do

8: RELAX(u, v, w)
```

Theorem 3.8

DIJKSTRA(G=(V,E),w,s) with nonnegative weighting function $w\colon E\to \mathbb{R}_{\geq 0}$ correctly computes all distances from s to all $v\in V$ in O(|V|f(|V|)+|E|) time where f(|V|) is runtime of <code>EXTRACT_MIN(Q)</code>.

[a shortest path can then be printed with PRINT_PATH(digraph G vertices s,v) for all $v \in V$]

WHITEBOARD: proof

Dijkstra's-Algorithm

Solves single sourse shortest path problem

```
DIJKSTRA(digraph G, weight fct w, sourse s)

1: INIT_SINGLE_SOURCE(G, s)

2: S = \emptyset

3: Q = V(G)

4: while Q \neq \emptyset do

5: u = \text{EXTRACT\_MIN}(Q)

6: S = S \cup \{u\}

7: for all v \in N^+(u) do

8: RELAX(u, v, w)
```

Theorem 3.8

DIJKSTRA(G = (V, E), w, s) with nonnegative weighting function $w \colon E \to \mathbb{R}_{\geq 0}$ correctly computes all distances from s to all $v \in V$ in O(|V|f(|V|) + |E|) time where f(|V|) is runtime of EXTRACT_MIN(Q).

[a shortest path can then be printed with PRINT_PATH(digraph G vertices s, v) for all $v \in V$]

Trivially Extract_MIN(Q) runs in O(|V|) time. However, using efficient datastructures (Min-priority queue and Fibonacci Heap) this runtime can be improved to $O(\log_2(|V|))$ time, in which case Dikstra is faster than Bellmann-Ford

Floyd-Warshall-Algorithm

Solves many sourses shortest path problem

Later in Part "Dynamic Programming"