Algorithms and Complexity

4. Dynamic Programming

Marc Hellmuth

University of Stockholm

Dynamic Programming (DP)

Dynamic Programming is ...

- ... a general, powerful algorithm design technique for solving optimization problems.
- ... a type of "very smart" exhaustive search that can be applied when the problem can be "subdivided" into overlapping subproblems.
- ... solves problems by combining the solutions to subproblems
- ... computes the value of an optimal solution first. Optionally, the optimal solution can be constructed from computed information (backtracking).

Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

... are recursively defined:

- f(1) = f(2) = 1
- f(n) = f(n-1) + f(n-2), n > 2.

Sequence: 1,1,2,3,5,8,13,21,34,...

... are recursively defined:

- f(1) = f(2) = 1
- f(n) = f(n-1) + f(n-2), n > 2.

naive recursive way:

```
F(\text{positive integer } n)
```

1: **if**
$$n \le 2$$
 then $f = 1$

3:
$$f = F(n-1) + F(n-2)$$

Sequence: 1,1,2,3,5,8,13,21,34,...

... are recursively defined:

- f(1) = f(2) = 1
- f(n) = f(n-1) + f(n-2), n > 2.

naive recursive way:

F(positive integer n)

1: **if** n < 2 then f = 1

2: else

3: f = F(n-1) + F(n-2)

4: **return** *f*

recursive way with memo:

F(positive integer n)

1: if $memo[n] \neq NIL$ then

2: return memo[n]

3: **if** n < 2 **then** f = 1

4: else

5: f = F(n-1) + F(n-2)

6: memo[n] = f

7: **return** *f*

Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

... are recursively defined:

- f(1) = f(2) = 1
- f(n) = f(n-1) + f(n-2), n > 2.

naive recursive way:

F(positive integer n)

1: **if** n < 2 **then** f = 1

2: else

3:
$$f = F(n-1) + F(n-2)$$

4: **return** *f*

recursive way with memo:

F(positive integer n)

1: if $memo[n] \neq NIL$ then

2: return memo[n]

3: **if** n < 2 **then** f = 1

4: else

5:
$$f = F(n-1) + F(n-2)$$

6: memo[n] = f

7: return f

Which algorithm is more efficient and why? WHITEBOARD

Dynamic Programming (DP)

In general, the design of DP consists of the following steps:

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, (typically in a bottom-up fashion).
- 4. Construct an optimal solution from computed information (backtracking)

Floyd-Warshall Algorithm (WHITEBOARD)

Aim: Find shortest u-v path for all $u,v\in V$ for given di-graph G=(V,E) with conservative weighting $w\colon E\to\mathbb{R}$.

- $\bullet \quad \text{W.l.o.g. } V = \{1,2,\ldots,n\}$
- $V^k := \{1, 2, \dots, k\}, k \le n$
- Inner vertices of path $\langle v_0, v_1, \dots v_{k-1}, v_k \rangle$ are $v_1, \dots v_{k-1}$
- $d_{ij}^{(k)}$ is the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set V^k , where $d_{ij}^{(0)} = w(i,j)$ if edge (i,j) exists
- · matrix W with

$$W_{ij} = \begin{cases} 0 & \text{if } i = j \\ w(i,j) & \text{else if}(i,j) \in E \\ \infty & \text{else, i.e., } i \neq j, (i,j) \in E \end{cases}$$

$$d_{ij}^{(k)} = \begin{cases} W_{ij} & \text{if } k = 0\\ \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)}\} & \text{else, i.e., } k \ge 1 \end{cases}$$

Because for any path, all intermediate vertices are in the set $V^n=V$, the matrix $D^{(n)}=(d_{ij}^{(n)})$ gives the final answer: $d_{ij}^{(n)}=\delta(i,j)$ for all $i,j\in V$.

Floyd-Warshall Algorithm

```
FLOYD-WARSHALL(matrix W, n)

1: D^{(0)} = W

2: for k = 1, ..., n do

3: let D^{(k)} = (d^{(k)}_{ij}) be a new n \times n matrix

4: for i = 1, ..., n do

5: for j = 1, ..., n do

6: d^{(k)}_{ij} = \min\{d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}\}

7: return D^{(n)}
```

Theorem 4.1

Let G = (V, E) be a digraph with conservative weighting w. Then, FLOYD-WARSHALL correctly computes the distances between all vertices of G in $O(|V|^3)$ -time.

Backtracking to find shortest paths: WHITEBOARD

Longest common subsequence (LCS)

Classical problem in bioinformative is to understand how "close" to genes or genomes are. There are several ways to adress this problem. A simple approach is the "Longest common subsequence" problem.

- String $X = x_1 x_2 \dots x_m$ = sequence of letters
- $Z = z_1 z_2 \dots z_k$ is subsequence of $X = x_1 x_2 \dots x_m$, if there are indices $i_1, i_2, \dots, i_k \in \{1, \dots, m\}$ such that $i_1 < i_2 < \dots < i_k$ and $z_j = x_{i_j}$ E.g. Z = BCDB is subsequence of X = ABCBDAB
- A subsequence Z of X and Y is a common subsequence of X and Y

Aim: Find longest subsequence of of *X* and *Y*.

Solution: via Dynamic Programming (WHITEBOARD)

Longest common subsequence (LCS) (WHITEBOARD)

```
LCS(strings X, Y)
1: m = X.length, n = Y.length
2: Let b[1 \dots m, 1 \dots n] be new array
3: Let c[0...m;0...n] be new array
4: for i = 1 \dots m do c[i, 0] = 0
5: for i = 0...n do c[0, j] = 0
6: for i = 1 ... m do
7:
       for i = 1 \dots n do
8:
           if x_i = y_i then
9:
               c[i,j] = c[i-1,j-1] + 1
10:
                b[i,i] = " \nwarrow "
11:
            else if c[i-1,j] > c[i,j-1] then
12:
                c[i,j] = c[i-1,j]
                b[i,j] = "\uparrow"
13:
14:
            else
15:
                c[i,j] = c[i,j-1]
                b[i,i] = "\leftarrow"
16:
17: return c and b
```

```
PRINT_LCS(b, X, i, j)

// Initial call PRINT_LCS(b, X, m, n)

1: if i = 0 or j = 0 then return

2: if b[i,j] = \text{```} \text{''} then

3: PRINT_LCS(b, X, i - 1, j - 1)

4: print x_i

5: else if b[i,j] = \text{``} \text{''} then

6: PRINT_LCS(b, X, i - 1, j)

7: else

8: PRINT_LCS(b, X, i, j - 1)
```

Theorem 4.3

LCS() and PRINT_LCS() correctly returns length and LCS of two strings $X = x_1 \dots x_n$ and $Y = y_1 \dots y_m$ in O(mn) time.