Algorithms and Complexity

4. Dynamic Programming

Marc Hellmuth

University of Stockholm

Dynamic Programming (DP)

Dynamic Programming is . ..
. ageneral, powerful algorithm design technique for solving optimization problems.

. atype of “very smart” exhaustive search that can be applied when the problem can
be “subdivided” into overlapping subproblems.

. solves problems by combining the solutions to subproblems

. computes the value of an optimal solution first. Optionally, the optimal solution can
be constructed from computed information (backtracking).

Example: Fibonacci Numbers...

Sequence: 1,1,2,3,5,8,13,21,34,...

... are recursively defined:
* f()=r2)=1
e f(n)=f(n—1)+f(n—2),n>2.

Example: Fibonacci Numbers...

Sequence: 1,1,2,3,5,8,13,21,34,...

... are recursively defined:
* f()=r2)=1
e f(n)=f(n—1)+f(n—2),n>2.

naive recursive way:
F(positive integer n)
1:ifn<2thenf =1

2: else

3 f=F(n-1)+Fn-2)
4: return f

Example: Fibonacci Numbers...
Sequence: 1,1,2,3,5,8,13,21,34,...

... are recursively defined:
* f()=r2)=1
e f(n)=f(n—1)+f(n—2),n>2.

naive recursive way: recursive way with memo:

F(positive integer n) F(positive integer n)

1:ifn<2thenf=1 1: if memo[n] #NIL then

2: else 2: return memo(n]

8 f=F(n—1)+F(n-2) 3 ifn<2thenf=1

4: return f 4: else
5. f=Fn—-1)+F(n-2)
6: memo[n] = f
7: return f

Example: Fibonacci Numbers...
Sequence: 1,1,2,3,5,8,13,21,34,...

... are recursively defined:
* f()=r2)=1
e f(n)=f(n—1)+f(n—2),n>2.

naive recursive way: recursive way with memo:

F(positive integer n) F(positive integer n)

1:ifn<2thenf=1 1: if memo[n] #NIL then

2: else 2: return memo(n]

8 f=F(n—1)+F(n-2) 3 ifn<2thenf=1

4: return f 4: else
5. f=Fn—-1)+F(n-2)
6: memo[n] = f
7: return f

Which algorithm is more efficient and why? WHITEBOARD

Dynamic Programming (DP)

In general, the design of DP consists of the following steps:

1.
2. Recursively define the value of an optimal solution.

3.

4. Construct an optimal solution from computed information (backtracking)

Characterize the structure of an optimal solution.

Compute the value of an optimal solution, (typically in a bottom-up fashion).

Floyd-Warshall Algorithm (WHITEBOARD)

Aim: Find shortest u — v path for all u,v € V for given di-graph G = (V,E) with
conservative weighting w: E — R.

* Wlog. V={1,2,...,n}

e VEi={1,2,....k},k<n

® |nner vertices of path < vy, vi,...vi_1, v > are vy,...ve_|

(k) is the weight of a shortest path from vertex i to vertex j for which all

|ntermedlate vertices are in the set V¥, where d,-(j) — w(i,j) if edge (i,/) exists
® matrix W with

0 ifi=j
Wi = w(i,j) elseif(i,j) € E
- else, i.e., i#j,(i,j) €E
w [if k=0
i mln{dk 1) d(k D) d(]."l)} else, i.e., k>1

Because for any path, all intermediate vertices are in the set V"' = V, the matrix
D) = (d (”)) gives the final answer: d(" = §(ij) forall ij € V.

Floyd-Warshall Algorithm

FLOYD-WARSHALL(matrix W, n)
1: DO =W
2: fork=1,...,ndo

3 letpk) = (dl(]k)) be a new n x n matrix
fori=1,...,ndo

k o (k=1) (k1 k-1
%) = minal ™V a4 dll

4
5:
6: ik
7

- return D(")

Theorem 4.1

Let G = (V,E) be a digraph with conservative weighting w. Then, FLOYD-WARSHALL
correctly computes the distances between all vertices of G in O(|V|*)-time.

Backtracking to find shortest paths: WHITEBOARD

Longest common subsequence (LCS)

Classical problem in bioinformative is to understand how “close” to genes or genomes
are. There are several ways to adress this problem. A simple approach is the “Longest
common subsequence” problem.

e String X = x1x,...x, = sequence of letters

® 7Z=17122...7; is subsequence of X = x| x;...x,,, if there are indices
I1,00,...,0} € {1,...,m} such that iy <ip <--- < i and =X
E.g. Z = BCDB is subsequence of X = ABCBDAB

* A subsequence Z of X and Y is a common subsequence of X and ¥

Aim: Find longest subsequence of of X and Y.

Solution: via Dynamic Programming (WHITEBOARD)

Longest common subsequence (LCS) (WHITEBOARD)

LCS(strings X, Y)

17

: m= X.length, n= Y.length

: Letb[l...m,1...n] be new array
: Letc[0...m;0...n] be new array
cfori=1...mdoc[i,0] =0

s forj=0...ndoc[0.j]=0
cfori=1...mdo

forj=1...ndo
ifx; = Yj then
clijl=cli—1,j—1]+1
blijl ="\
else if c[i — 1,j] > c[i,j— 1] then
L[lv.]] = C[i_ 1]]
blisj]="1"
else
C[ln]] = C[i,j— 1]
blig) =" "

: return c and b

PRINT_LCS(b, X, i,))

// Initial call PRINT_LCS(b, X, m,n)

1: if i=0o0rj=0 then return
2:if pli,j]= “\" then

3: PRINT_LCS(b, X,i—1,j—1)
4: print x;

5: else if b[i,j] = “1” then

6: PRINT_.LCS(b, X, i — 1))

7: else

8: PRINT_.LCS(b, X, i,j— 1)

Theorem 4.3

LCS() and PRINT_LCS() correctly
returns length and LCS of two strings
X=xi...xpand Y =y ...y, in O(mn)
time.

