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Dynamic Programming (DP)

Dynamic Programming is . . .

. . . a general, powerful algorithm design technique for solving optimization problems.

. . . a type of “very smart” exhaustive search that can be applied when the problem can
be “subdivided” into overlapping subproblems.

. . . solves problems by combining the solutions to subproblems

. . . computes the value of an optimal solution first. Optionally, the optimal solution can
be constructed from computed information (backtracking).
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Example: Fibonacci Numbers. . .
Sequence: 1,1,2,3,5,8,13,21,34, . . .

. . . are recursively defined:
• f (1) = f (2) = 1
• f (n) = f (n−1)+ f (n−2), n > 2.

naive recursive way:

F(positive integer n)
1: if n≤ 2 then f = 1
2: else
3: f = F(n−1)+F(n−2)
4: return f

recursive way with memo:

F(positive integer n)
1: if memo[n] 6=NIL then
2: return memo[n]
3: if n≤ 2 then f = 1
4: else
5: f = F(n−1)+F(n−2)
6: memo[n] = f
7: return f

Which algorithm is more efficient and why? WHITEBOARD
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Dynamic Programming (DP)

In general, the design of DP consists of the following steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, (typically in a bottom-up fashion).

4. Construct an optimal solution from computed information (backtracking)
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Floyd-Warshall Algorithm (WHITEBOARD)

Aim: Find shortest u− v path for all u,v ∈ V for given di-graph G = (V,E) with
conservative weighting w : E→ R.

• W.l.o.g. V = {1,2, . . . ,n}
• Vk := {1,2, . . . ,k}, k ≤ n
• Inner vertices of path < v0,v1, . . .vk−1,vk > are v1, . . .vk−1

• d(k)ij is the weight of a shortest path from vertex i to vertex j for which all

intermediate vertices are in the set Vk, where d(0)ij = w(i, j) if edge (i, j) exists
• matrix W with

Wij =


0 if i = j
w(i, j) else if(i, j) ∈ E
∞ else, i.e., i 6= j,(i, j) ∈ E

•

d(k)ij =

{
Wij if k = 0

min{d(k−1)
ij ,d(k−1)

ik +d(k−1)
kj } else, i.e., k ≥ 1

Because for any path, all intermediate vertices are in the set Vn = V, the matrix
D(n) = (d(n)ij ) gives the final answer: d(n)ij = δ (i, j) for all i, j ∈ V.
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Floyd-Warshall Algorithm

FLOYD-WARSHALL(matrix W, n)
1: D(0) = W
2: for k = 1, . . . ,n do
3: let D(k) = (d(k)ij ) be a new n×n matrix
4: for i = 1, . . . ,n do
5: for j = 1, . . . ,n do
6: d(k)ij =min{d(k−1)

ij ,d(k−1)
ik +d(k−1)

kj }

7: return D(n)

Theorem 4.1
Let G = (V,E) be a digraph with conservative weighting w. Then, FLOYD-WARSHALL

correctly computes the distances between all vertices of G in O(|V|3)-time.

Backtracking to find shortest paths: WHITEBOARD
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Longest common subsequence (LCS)

Classical problem in bioinformative is to understand how “close” to genes or genomes
are. There are several ways to adress this problem. A simple approach is the “Longest
common subsequence” problem.
• String X = x1x2 . . .xm = sequence of letters
• Z = z1z2 . . .zk is subsequence of X = x1x2 . . .xm, if there are indices

i1, i2, . . . , ik ∈ {1, . . . ,m} such that i1 < i2 < · · ·< ik and zj = xij

E.g. Z = BCDB is subsequence of X = ABCBDAB

• A subsequence Z of X and Y is a common subsequence of X and Y

Aim: Find longest subsequence of of X and Y.

Solution: via Dynamic Programming (WHITEBOARD)
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Longest common subsequence (LCS) (WHITEBOARD)

LCS(strings X, Y)
1: m= X.length, n= Y.length
2: Let b[1 . . .m,1 . . .n] be new array
3: Let c[0 . . .m;0 . . .n] be new array
4: for i = 1 . . .m do c[i,0] = 0
5: for j = 0 . . .n do c[0, j] = 0
6: for i = 1 . . .m do
7: for j = 1 . . .n do
8: if xi = yj then
9: c[i, j] = c[i−1, j−1]+1
10: b[i, j] = “↖′′
11: else if c[i−1, j]≥ c[i, j−1] then
12: c[i, j] = c[i−1, j]
13: b[i, j] = “ ↑′′
14: else
15: c[i, j] = c[i, j−1]
16: b[i, j] = “←′′

17: return c and b

PRINT LCS(b, X, i, j)
// Initial call PRINT LCS(b, X, m,n)

1: if i = 0 or j = 0 then return
2: if b[i, j] = “↖′′ then
3: PRINT LCS(b, X, i−1, j−1)
4: print xi
5: else if b[i, j] = “ ↑′′ then
6: PRINT LCS(b, X, i−1, j)
7: else
8: PRINT LCS(b, X, i, j−1)

Theorem 4.3
LCS( ) and PRINT LCS( ) correctly
returns length and LCS of two strings
X = x1 . . .xn and Y = y1 . . .ym in O(mn)
time.

7 / 7


