
Dynamic Programming

Axel Ljungström

(Corrected) notes from tutorial 14/9-2023

Problem 1

Given a (non-empty) list of integers L = [a0, . . . , an], find the smallest sum
consecutive sublist L′ = [aj . . . aj+k] w.r.t the sum aj + · · ·+ aj+k.

Solution

Step 1: Characterise solution

Suppose we are given a solution, L′ = [aj . . . aj+k]. We consider two cases

• Case 1 : The length of L′ is 1. In this case, L′ = [aj+k]

• Case 2 : The length of L′ is greater than one. In this case, the minimal
sum is given by aj+k + (aj+k−1 + · · ·+ aj)︸ ︷︷ ︸

Smallest solution ending at aj+k−1

Step 2: Recursively define solution

Let δi denote the minimal sum of a sublist with the restriction that it ends with
ai. Using the above, we can recursively define it

δi =

{
a0 if i = 0

min(ai, ai + δi−1) otherwise

The idea is that when all δi’s are computed, we end up with a list D = [δ0, . . . , δn]
such that D[i] contains the smallest sum of a sublist ending at ai. Any small-
est sublist has to end somewhere, so by picking mini D[i], we have solved our
problem.

Step 3: Write program

ALG(L)

D = [0, . . . , 0] #New List of length n

1



D[0] = L[0] #‘Base case’
for i ∈ (1, . . . , n) do

D[i] = min(L[i], L[i] +D[i− 1]) # This is δi from step 2!
end

return D

The minimal sum is computed by computing min(ALG(L)).

Step 4: Use the algorithm in step 3 to find the smallest
sublist

Exericse

2



The other problems I mentioned (for next time?):

Problem 2

Given a sequence of integers a0, . . . , an, find the longest increasing subsequence
ai1 < · · · < aim

Problem 3

Given a set of boxes Bi = (Wi, Li, Hi) (where Wi = width, Li = length, Hi =
height), find the tallest possible stack of boxes s.t. if Bi is on top of Bj , then
Wi < Wj and Li < Lj . Let us also disallow rotatating the boxes, to make things
easier.

Problem 4

Same thing again, but with rotations allowed this time.

3


