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Greedy Algorithms

A greedy algorithm always makes the choice that looks best at the moment. That is, it
makes a locally optimal choice in the hope that this choice will lead to a globally optimal
solution.
Example: WHITEBOARD
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Minimum Spanning Tree

Let G = (V,E) be a weighted, connected, undirected graph and w({u,v}) be the weight
of edge {u,v}.
A spanning tree of G is a subgraph T = (V,F) of G such that T is a tree.

A minimum spanning tree (MST) is a spanning tree T = (V,F) of minimum weight w(T),
i.e.,

w(T) := ∑
e∈F

w(e)→min!

MST problem
Find a minimum spanning tree for a given weighted, connected, undirected graph.
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Kruskal’s Algorithm

KRUSKAL(G = (V,E),w : E→ R) // m = |E|
1: sort edges such that w(e1)≤ w(w2) · · · ≤ w(em)
2: F = /0, T = (V,F)
3: for i = 1, . . . ,m do
4: if (V,F∪{ei}) is acyclic then
5: T = (V,F∪{ei})
6: return T

Theorem 5.1
KRUSKAL correctly computes an MST for a given undirected, connected graph
G = (V,E) in O(|E||V|) time

proof: WHITEBOARD
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Matroid

A matroid is a tuple (R,F) such that

M1 F 6= /0 is a collection of subsets of the set R, i.e., F⊆ P(R).
(Elements in F are called independent)

M2 Closed w.r.t. Inclusion: Y ∈ F, X ⊆ Y ⇒ X ∈ F
M3 Exchange Property: For all X,Y ∈ F and |Y|> |X| ⇒ exists y ∈ Y \X such that

X∪{y} ∈ F .

If (R,F) satisfies (M1) and (M2) but not necessarily (M3), then (R,F) is called independent
system.

Many optimization problems can be formulated as independent system, where R is ground
set of elements that can be chosen (eg. edges in the MST-problem) and F is a set of
subsets of feasible solutions (eg. all spanning forests in a graph).
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Lemma 5.5
If (R,F) is an independent system, then the following conditions are equivalent:

M3 For all X,Y ∈ F and |Y|> |X| ⇒ exists y ∈ Y \X such that X∪{y} ∈ F.

M3’ For all X,Y ∈ F and |Y|= |X|+1⇒ exists y ∈ Y \X such that X∪{y} ∈ F.

Proof.
chalkboard.
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Bases of an independent system (R,F) are all maximal elements of F.

Theorem 5.4
The basis elements of a matroid have always the same size.

Proof.
Let X,Y be bases of F such that |Y|> |X|

(M3)⇒ ∃y ∈ Y \X such that X∪{y} ∈ F
⇒ X is not maximal and thus no basis; a contradiction
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GREEDY((R,F), w : R→ R≥0) // For max-problems, min-prob. similar
1: sort elements in R such that w(e1)≥ w(e2)≥ ·· · ≥ w(em)
2: F = /0
3: for i = 1..m do
4: if F∪{ei} ∈ F then
5: F = F∪{ei}
6: return F

Runtime: If f (m) denotes the runtime to check if F∪{ei} ∈ F, we have total-runtime
O(m log(m)+mf (m)).

Theorem 5.6
Let (R,F) be an independent system. Then, (R,F) is a matroid if and only if GREEDY
returns a maximum-weighted element in F for all weighting functions w : R→ R≥0.

proof: WHITEBOARD
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