Algorithms and Complexity

5. Greedy Algorithms

Marc Hellmuth

University of Stockholm

Greedy Algorithms

A greedy algorithm always makes the choice that looks best at the moment. That is, it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.

Example: WHITEBOARD

Minimum Spanning Tree

Let G = (V, E) be a weighted, connected, undirected graph and $w(\{u, v\})$ be the weight of edge $\{u, v\}$.

A spanning tree of G is a subgraph T = (V, F) of G such that T is a tree.

Minimum Spanning Tree

Let G = (V, E) be a weighted, connected, undirected graph and $w(\{u, v\})$ be the weight of edge $\{u, v\}$.

A spanning tree of G is a subgraph T = (V, F) of G such that T is a tree.

A minimum spanning tree (MST) is a spanning tree T=(V,F) of minimum weight w(T), i.e.,

$$w(T) := \sum_{e \in F} w(e) \to \min!$$

Minimum Spanning Tree

Let G = (V, E) be a weighted, connected, undirected graph and $w(\{u, v\})$ be the weight of edge $\{u, v\}$.

A spanning tree of G is a subgraph T = (V, F) of G such that T is a tree.

A minimum spanning tree (MST) is a spanning tree T = (V, F) of minimum weight w(T), i.e.,

$$w(T) := \sum_{e \in F} w(e) \to \min!$$

MST problem

Find a minimum spanning tree for a given weighted, connected, undirected graph.

Kruskal's Algorithm

```
KRUSKAL(G = (V, E), w: E \to \mathbb{R}) / / m = |E|
1: sort edges such that w(e_1) \le w(w_2) \cdots \le w(e_m)
2: F = \emptyset, T = (V, F)
3: for i = 1, \dots, m do
4: if (V, F \cup \{e_i\}) is acyclic then
5: T = (V, F \cup \{e_i\})
6: return T
```

Theorem 5.1

KRUSKAL correctly computes an MST for a given undirected, connected graph G=(V,E) in O(|E||V|) time

proof: WHITEBOARD

Matroid

A matroid is a tuple (R, \mathbb{F}) such that

- M1 $\mathbb{F} \neq \emptyset$ is a collection of subsets of the set R, i.e., $\mathbb{F} \subseteq \mathbb{P}(R)$. (Elements in \mathbb{F} are called independent)
- M2 Closed w.r.t. Inclusion: $Y \in \mathbb{F}$, $X \subseteq Y \Rightarrow X \in \mathbb{F}$
- M3 Exchange Property: For all $X,Y\in\mathbb{F}$ and $|Y|>|X|\Rightarrow$ exists $y\in Y\setminus X$ such that $X\cup\{y\}\in\mathbb{F}$.

If (R, \mathbb{F}) satisfies (M1) and (M2) but not necessarily (M3), then (R, \mathbb{F}) is called independent system.

Many optimization problems can be formulated as independent system, where R is ground set of elements that can be chosen (eg. edges in the MST-problem) and \mathbb{F} is a set of subsets of feasible solutions (eg. all spanning forests in a graph).

Matroid

A matroid is a tuple (R, \mathbb{F}) such that

- M1 $\mathbb{F} \neq \emptyset$ is a collection of subsets of the set R, i.e., $\mathbb{F} \subseteq \mathbb{P}(R)$. (Elements in \mathbb{F} are called independent)
- M2 Closed w.r.t. Inclusion: $Y \in \mathbb{F}$, $X \subseteq Y \Rightarrow X \in \mathbb{F}$
- M3 Exchange Property: For all $X,Y\in\mathbb{F}$ and $|Y|>|X|\Rightarrow$ exists $y\in Y\setminus X$ such that $X\cup\{y\}\in\mathbb{F}$.

Lemma 5.5

If (R, \mathbb{F}) is an independent system, then the following conditions are equivalent:

- M3 For all $X, Y \in \mathbb{F}$ and $|Y| > |X| \Rightarrow$ exists $y \in Y \setminus X$ such that $X \cup \{y\} \in \mathbb{F}$.
- M3' For all $X,Y \in \mathbb{F}$ and $|Y| = |X| + 1 \Rightarrow$ exists $y \in Y \setminus X$ such that $X \cup \{y\} \in \mathbb{F}$.

Proof.

chalkboard.

Bases of an independent system (R, \mathbb{F}) are all maximal elements of \mathbb{F} .

Theorem 5.4

The basis elements of a matroid have always the same size.

Proof.

Let X, Y be bases of \mathbb{F} such that |Y| > |X|

 $\overset{(M3)}{\Rightarrow} \exists y \in Y \setminus X \text{ such that } X \cup \{y\} \in \mathbb{F}$

$$\Rightarrow \exists y \in Y \setminus X \text{ such that } X \cup \{y\} \in \mathbb{F}$$

 \Rightarrow X is not maximal and thus no basis; a contradiction

GREEDY((R, \mathbb{F}) , $w : R \to \mathbb{R}_{\geq 0}$) // For max-problems, min-prob. similar

1: sort elements in R such that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$

2: $F = \emptyset$

3: **for** i = 1..m **do**

4: if $F \cup \{e_i\} \in \mathbb{F}$ then

5: $F = F \cup \{e_i\}$

6: **return** *F*

Runtime: If f(m) denotes the runtime to check if $F \cup \{e_i\} \in \mathbb{F}$, we have total-runtime $O(m \log(m) + mf(m))$.

Theorem 5.6

Let (R, \mathbb{F}) be an independent system. Then, (R, \mathbb{F}) is a matroid if and only if GREEDY returns a maximum-weighted element in \mathbb{F} for all weighting functions $w : R \to \mathbb{R}_{>0}$.

proof: WHITEBOARD