
Algorithms and Complexity
6. Approximation Algorithms

Marc Hellmuth

University of Stockholm

Approximation Algorithms

NP complete problems

• no polynomial time solution known
• but many problems too important to ignore

• work-arounds:

− use exponential time solution for small problem instances
− identify special cases in which a polynomial time solution exists
− approximate optimal solution

1 / 10

Approximation Algorithms

NP complete problems

• no polynomial time solution known
• but many problems too important to ignore

• work-arounds:

− use exponential time solution for small problem instances
− identify special cases in which a polynomial time solution exists
− approximate optimal solution

1 / 10

Exmpl: Vertex Cover

Two possible heuristics:

GREEDY VC1(G = (E,V))
1: C = /0, E′ = E
2: while E′ 6= /0 do
3: v = vertex of max degree in G′ = (V,E′)
4: C = C∪{v}
5: Remove all edges invident to v from E′

6: return C

GREEDY VC2(G = (E,V))
1: C = /0, E′ = E
2: while E′ 6= /0 do
3: e = {u,w} some edge in E′

4: C = C∪{u,w}
5: Remove all edges incident to u

and w from E′

6: return C

Which one is “better”, that is, in general closer to an optimal solution?

As we shall see the “smarter” method GREEDY VC1 does not yield solutions that are, in
general, close to the optimal one, while GREEDY VC2 always yields a vertex cover C that
is never larger than two times the optimal solution.

WHITEBOARD

2 / 10

ρ-Approximation Algorithm

Definition 1
• Π: Optimization problem
• I ∈ Π an instance of Π

• A(I): return value of algorithm A applied on instance I
• OPT(I): optimal value of instance I

Definition 2
Algorithm A has approximation-ratio ρ ∈ R≥1 if for all instances I ∈ Π it holds that

1
ρ

OPT(I)≤ A(I)≤ ρOPT(I)

Such an algorithm is called ρ-approximation algorithm

For minimzation problems we only need to show: A(I)
OPT(I) ≤ ρ

For maximization problems we only need to show: OPT(I)
A(I) ≤ ρ

3 / 10

Exmpl: Traveling-salesperson problem (TSP)

Let G = (V,E) be a complete undirected graph in which each edge e ∈ E has weight
w(e)≥ 0.
Find a Hamiltonian cycle (“tour”, a cycle that visits every vertex exactly once) of G with
minimum cost.

Definition 3 (Triangle inequality)
We say that the weight function w satisfies the triangle inequality if

w({a,c}) + w({b,c})≥ w({a,b})

for all vertices a,b,c ∈ V.

Definition 4
4-TSP denotes the set of all instances of TSP for which the weights satisfy the triangle
inequality.

Exercise: 4-TSP remains NP-complete

4 / 10

Approximating4-TSP

APPROX-TSP
1: construct a minimum spanning tree T for G
2: let H = cycle “visiting the vertices preorder walk” in T
3: return the Hamiltonian cycle H

1: T = (V,E) = tree
2: v.visited = false ∀v ∈ V
3: x ∈ V

PREORDER-WALK(x)
1: if x.visited = false then
2: print x
3: x.visited = true
4: for all v ∈ N(x) in T do
5: PREORDER-WALK(v)

WHITEBOARD

5 / 10

Theorem 6.1
APPROX-TSP is a polynomial-time 2-approximation algorithm for4-TSP.

proof: WHITEBOARD

Theorem 6.2
If P 6= NP, then there is no polynomial-time ρ-approximation algorithm for TSP for all
ρ ≥ 1

proof: WHITEBOARD

6 / 10

Approximation scheme

Definition 5 (Approximation scheme)
An approximation scheme is an approximation algorithm that takes as input instances of
an optimization problem Π and an ε > 0, such that for any ε > 0, the scheme is a
(1 + ε)-approximation algorithm for Π.

Definition 6 (Polynomial-time approximation scheme)
An polynomial-time approximation scheme (PTAS) is an approximation scheme that runs
in polynomial time in n for any ε > 0.

Example 7
O(nexp(1/ε))

7 / 10

Approximation scheme

Definition 8 (Fully polynomial-time approximation scheme)
A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme
whose running time is polynomial in both the size of the input I and 1/ε .

Example 9
O(n5(1/ε)2)

Remark
In a fully polynomial-time approximation scheme a decrease of ε by a constant factor
leads to an increase in the running time by at most a(nother) constant factor.

8 / 10

Exmpl: Simple Knapsack

SIMPLE KNAPSACK (SK)
Input: Set of item W = {1, . . . ,n}, Capacity C, value(=weight) of item w1 . . . ,wn ∈ N,
integer B
Question: ∃M ⊂W such that B≤ ∑i∈M wi ≤ C

Exercise: SK is NP-complete

GREEDY SK(W = {1, . . . ,n}, weights w1 ≥ w2 ≥ ·· · ≥ wn, C)
1: M = /0, value= 0
2: for i = 1 . . .n do
3: if value +wi ≤ C then
4: M = M∪{i}
5: value = value +wi

6: return M, value

Theorem 6.3
GREEDY SK is a polynomial-time 2-approximation algorithm for SK.

Proof: WHITEBOARD
9 / 10

Exmpl: Simple Knapsack

SK-SCHEME(W = {1, . . . ,n}, weights w1 ≥ w2 ≥ ·· · ≥ wn, C, ε)
1: kε = d 1

ε
e, value= 0

2: for all subsets M ⊆W with |M| ≤ kε and ∑i∈M wi ≤ C do
3: Extend M via GREEDY SK to M∗, that is, add to M = {i1, . . . , ip} greedily

ip+1, . . . ,n

4: return the M∗ for which ∑i∈M∗ wi is maximum

Theorem 6.3
SK-SCHEME is a PTAS for SK.

Proof: WHITEBOARD

10 / 10

