Algorithms and Complexity

6. Approximation Algorithms

Marc Hellmuth

University of Stockholm

Approximation Algorithms

NP complete problems

- · no polynomial time solution known
- but many problems too important to ignore

Approximation Algorithms

NP complete problems

- · no polynomial time solution known
- · but many problems too important to ignore
- work-arounds:
 - use exponential time solution for small problem instances
 - identify special cases in which a polynomial time solution exists
 - approximate optimal solution

Exmpl: Vertex Cover

Two possible heuristics:

 $GREEDY_VC1(G = (E, V))$

```
1: C = \emptyset, E' = E

2: while E' \neq \emptyset do

3: v = \text{vertex of max degree in } G' = (V, E')

4: C = C \cup \{v\}

5: Remove all edges invident to v from E'

6: return C
```

```
GREEDY_VC2(G = (E, V))
1: C = \emptyset, E' = E
```

- 1. $C = \emptyset$, E = E
- 2: while $E' \neq \emptyset$ do
- 3: $e = \{u, w\}$ some edge in E'
- 4: $C = C \cup \{u, w\}$
- 5: Remove all edges incident to u and w from E'
- 6: return C

Which one is "better", that is, in general closer to an optimal solution?

As we shall see the "smarter" method GREEDY_VC1 does not yield solutions that are, in general, close to the optimal one, while $GREEDY_VC2$ always yields a vertex cover C that is never larger than two times the optimal solution.

WHITEBOARD

ρ -Approximation Algorithm

Definition 1

- Π: Optimization problem
- $I \in \Pi$ an instance of Π
- A(I): return value of algorithm A applied on instance I
- OPT(I): optimal value of instance I

Definition 2

Algorithm A has approximation-ratio $\rho \in \mathbb{R}_{>1}$ if for all instances $I \in \Pi$ it holds that

$$\frac{1}{\rho} \mathsf{OPT}(I) \leq A(I) \leq \rho \mathsf{OPT}(I)$$

Such an algorithm is called ρ -approximation algorithm

For minimzation problems we only need to show: $\frac{A(I)}{\mathsf{OPT}(I)} \leq \rho$

For maximization problems we only need to show: $\frac{\mathsf{OPT}(I)}{A(I)} \leq \rho$

Exmpl: Traveling-salesperson problem (TSP)

Let G=(V,E) be a complete undirected graph in which each edge $e\in E$ has weight $w(e)\geq 0$.

Find a $\operatorname{Hamiltonian}$ cycle ("tour", a cycle that visits every vertex exactly once) of G with minimum cost.

Definition 3 (Triangle inequality)

We say that the weight function w satisfies the triangle inequality if

$$w({a,c}) + w({b,c}) \ge w({a,b})$$

for all vertices $a, b, c \in V$.

Definition 4

 $\triangle\text{-TSP}$ denotes the set of all instances of TSP for which the weights satisfy the triangle inequality.

Exercise: △-TSP remains NP-complete

Approximating \triangle -TSP

APPROX-TSP

- 1: construct a minimum spanning tree T for G
- 2: let H = cycle "visiting the vertices preorder walk" in T
- 3: return the Hamiltonian cycle H

```
1: T = (V, E) = \text{tree}
```

2: v.visited = false $\forall v \in V$

3: $x \in V$

PREORDER-WALK(x)

1: **if** *x*.visited = false **then**

2: print x

3: x.visited = true

4: **for** all $v \in N(x)$ in T **do**

5: PREORDER-WALK(v)

WHITEBOARD

Theorem 6.1

APPROX-TSP is a polynomial-time 2-approximation algorithm for \triangle -TSP.

proof: WHITEBOARD

Theorem 6.2

If $P \neq NP$, then there is no polynomial-time ρ -approximation algorithm for TSP for all $\rho \geq 1$

proof: WHITEBOARD

Approximation scheme

Definition 5 (Approximation scheme)

An approximation scheme is an approximation algorithm that takes as input instances of an optimization problem Π and an $\varepsilon>0$, such that for any $\varepsilon>0$, the scheme is a $(1+\varepsilon)$ -approximation algorithm for Π .

Definition 6 (Polynomial-time approximation scheme)

An polynomial-time approximation scheme (PTAS) is an approximation scheme that runs in polynomial time in n for any $\varepsilon > 0$.

Example 7

 $O(n^{\exp(1/\varepsilon)})$

Approximation scheme

Definition 8 (Fully polynomial-time approximation scheme)

A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme whose running time is polynomial in both the size of the input I and $1/\varepsilon$.

Example 9

 $O(n^5(1/\varepsilon)^2)$

Remark

In a fully polynomial-time approximation scheme a decrease of ε by a constant factor leads to an increase in the running time by at most a(nother) constant factor.

Exmpl: Simple Knapsack

SIMPLE_KNAPSACK (SK)

```
Input: Set of item W = \{1, ..., n\}, Capacity C, value(=weight) of item w_1 ..., w_n \in \mathbb{N},
```

integer B

Question: $\exists M \subset W$ such that $B \leq \sum_{i \in M} w_i \leq C$

Exercise: SK is NP-complete

```
GREEDY_SK(W = \{1, \ldots, n\}, weights w_1 \ge w_2 \ge \cdots \ge w_n, C)

1: M = \emptyset, value= 0

2: for i = 1 \ldots n do

3: if value +w_i \le C then

4: M = M \cup \{i\}

5: value = value +w_i

6: return M. value
```

Theorem 6.3

GREEDY_SK is a polynomial-time 2-approximation algorithm for SK.

Proof: WHITEBOARD

Exmpl: Simple Knapsack

```
SK-SCHEME(W = \{1, ..., n\}, weights w_1 \ge w_2 \ge \cdots \ge w_n, C, \varepsilon)
```

- 1: $k_{\varepsilon} = \lceil \frac{1}{\varepsilon} \rceil$, value= 0
- 2: **for** all subsets $M \subseteq W$ with $|M| \le k_{\mathcal{E}}$ and $\sum_{i \in M} w_i \le C$ **do**
- 3: Extend M via GREEDY_SK to M^* , that is, add to $M=\{i_1,\ldots,i_p\}$ greedily i_{p+1},\ldots,n
- 4: **return** the M^* for which $\sum_{i \in M^*} w_i$ is maximum

Theorem 6.3

SK-SCHEME is a PTAS for SK.

Proof: WHITEBOARD