Algorithms and Complexity

6. Approximation Algorithms

Marc Hellmuth

University of Stockholm

Approximation Algorithms

NP complete problems

® no polynomial time solution known

® but many problems too important to ignore

Approximation Algorithms

NP complete problems
® no polynomial time solution known
® but many problems too important to ignore
® work-arounds:

— use exponential time solution for small problem instances
— identify special cases in which a polynomial time solution exists
— approximate optimal solution

Exmpl: Vertex Cover

Two possible heuristics:

GREEDY_.VC1(G = (E,V)) GREEDY_VC2(G = (E,V))
1. C=0,E =E 1. C=0,E =E
2: while E' # 0 do 2: while E' # 0 do
3: v = vertex of max degree in G’ = (V,E') 3: e={u,w} some edgein E’
4: C=cCcui{v} 4: C=cCU{uw}
5: Remove all edges invident to v from E’ 5. Remove all edges incident to u
6: return C and w from E’
6: return C

Which one is “better”, that is, in general closer to an optimal solution?

As we shall see the “smarter” method GREEDY_VC1 does not yield solutions that are, in
general, close to the optimal one, while GREEDY_VC2 always yields a vertex cover C that
is never larger than two times the optimal solution.

WHITEBOARD

p-Approximation Algorithm

Definition 1
® [1: Optimization problem
¢ [e Ilaninstance of I
® A(I): return value of algorithm A applied on instance /

® OPT(/): optimal value of instance /

Definition 2
Algorithm A has approximation-ratio p € R if for all instances / < I it holds that

%OPT(I) <A(I) < pOPT(I)

Such an algorithm is called p-approximation algorithm
For minimzation problems we only need to show: of:’(TI()z) <p

For maximization problems we only need to show: O:(T[()[) <p

Exmpl: Traveling-salesperson problem (TSP)

Let G = (V,E) be a complete undirected graph in which each edge e € E has weight
w(e) > 0.

Find a Hamiltonian cycle (“tour”, a cycle that visits every vertex exactly once) of G with
minimum cost.

Definition 3 (Triangle inequality)
We say that the weight function w satisfies the triangle inequality if
w({a,c})+w({b,c}) = w({a,b})

for all vertices a,b,c € V.

Definition 4

A-TSP denotes the set of all instances of TSP for which the weights satisfy the triangle
inequality.

Exercise: A-TSP remains NP-complete

Approximating A-TSP

APPROX-TSP

1: construct a minimum spanning tree T for G

2: let H = cycle “visiting the vertices preorder walk” in T
3: return the Hamiltonian cycle H

1: T=(V,E) =tree

2: v.visited = false Vv € V
3:xeV
PREORDER-WALK(X)

1: if x.visited = false then

2 print x

35 x.visited = true
4 forallve N(x) in T do
5 PREORDER-WALK(v)

WHITEBOARD

Theorem 6.1
APPROX-TSP is a polynomial-time 2-approximation algorithm for /A-TSP,

proof: WHITEBOARD

Theorem 6.2

If P # NP, then there is no polynomial-time p -approximation algorithm for TSP for all
p>1

proof: WHITEBOARD

Approximation scheme

Definition 5 (Approximation scheme)

An approximation scheme is an approximation algorithm that takes as input instances of
an optimization problem I and an € > 0, such that for any € > 0, the scheme is a
(1+ €)-approximation algorithm for I1.

Definition 6 (Polynomial-time approximation scheme)

An polynomial-time approximation scheme (PTAS) is an approximation scheme that runs
in polynomial time in n for any € > 0.

Example 7
0(n=®(1/2))

Approximation scheme

Definition 8 (Fully polynomial-time approximation scheme)

A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme
whose running time is polynomial in both the size of the input 7 and 1/¢.

Example 9
o(n’(1/¢)?)

Remark

In a fully polynomial-time approximation scheme a decrease of € by a constant factor
leads to an increase in the running time by at most a(nother) constant factor.

Exmpl: Simple Knapsack

SIMPLE_KNAPSACK (SK)

Input: Set of item W = {1,...,n}, Capacity C, value(=weight) of item w
integer B
Question: IM C W such that B <Y ;cpyw; < C

Exercise: SK is NP-complete

GREEDY_SK(W = {1,...,n}, weights w; > wy > --- > wy, C)
1: M =0, value=0

2: fori=1...ndo

3 if value +w; < C then

4: M=MU{i}

5 value = value +w;

6: return M, value

Theorem 6.3

GREEDY_SK is a polynomial-time 2-approximation algorithm for SK.

Proof: WHITEBOARD

.owp €N,

Exmpl: Simple Knapsack

SK-SCHEME(W = {1,...,n}, weights w; > wy > - > wy, C, €)
1: ke =[1], value=0

2: for all subsets M C W with |M| < ke and ¥ ;jcpyw; < C do

3: Extend M via GREEDY_SK to M*, that is, add to M = {ij,

4: return the M* for which Y ;< w; is maximum

Theorem 6.3
SK-SCHEME is a PTAS for SK.

Proof: WHITEBOARD

-..,ip} greedily

