
Algorithms and Complexity
Fixed Parameter Algorithms

Marc Hellmuth

University of Stockholm

Fixed Parameter Algorithms

Fixed Parameter Algorithms are an alternative way to deal with NP-hard problems
instead of approximation algorithms.

Three general desired features of an algorithm:

1. “Solve” (NP-)hard problems

2. Run in polynomial time (fast)

3. Get exact solutions

Unless P = NP, an algorithm can have two of these three features, but not all three.

Feature 2+3: polynomial-time exact algorithm (in P)

Feature 1+2: e.g. approximation algorithms

Feature 1+3: Fixed-parameter algorithms

Idea: Aim an exact algorithm but isolate exponential runtime to a specific parameter.
When the value of this parameter is small, the algorithm gets fast.

1 / 5

Fixed Parameter Algorithms

Fixed Parameter Algorithms are an alternative way to deal with NP-hard problems
instead of approximation algorithms.

Three general desired features of an algorithm:

1. “Solve” (NP-)hard problems

2. Run in polynomial time (fast)

3. Get exact solutions

Unless P = NP, an algorithm can have two of these three features, but not all three.

Feature 2+3: polynomial-time exact algorithm (in P)

Feature 1+2: e.g. approximation algorithms

Feature 1+3: Fixed-parameter algorithms

Idea: Aim an exact algorithm but isolate exponential runtime to a specific parameter.
When the value of this parameter is small, the algorithm gets fast.

1 / 5

Fixed Parameter Algorithms

Fixed Parameter Algorithms are an alternative way to deal with NP-hard problems
instead of approximation algorithms.

Three general desired features of an algorithm:

1. “Solve” (NP-)hard problems

2. Run in polynomial time (fast)

3. Get exact solutions

Unless P = NP, an algorithm can have two of these three features, but not all three.

Feature 2+3: polynomial-time exact algorithm (in P)

Feature 1+2: e.g. approximation algorithms

Feature 1+3: Fixed-parameter algorithms

Idea: Aim an exact algorithm but isolate exponential runtime to a specific parameter.
When the value of this parameter is small, the algorithm gets fast.

1 / 5

Fixed Parameter Algorithms

Fixed Parameter Algorithms are an alternative way to deal with NP-hard problems
instead of approximation algorithms.

Three general desired features of an algorithm:

1. “Solve” (NP-)hard problems

2. Run in polynomial time (fast)

3. Get exact solutions

Unless P = NP, an algorithm can have two of these three features, but not all three.

Feature 2+3: polynomial-time exact algorithm (in P)

Feature 1+2: e.g. approximation algorithms

Feature 1+3: Fixed-parameter algorithms

Idea: Aim an exact algorithm but isolate exponential runtime to a specific parameter.
When the value of this parameter is small, the algorithm gets fast.

1 / 5

Fixed Parameter Algorithms

Fixed Parameter Algorithms are an alternative way to deal with NP-hard problems
instead of approximation algorithms.

Three general desired features of an algorithm:

1. “Solve” (NP-)hard problems

2. Run in polynomial time (fast)

3. Get exact solutions

Unless P = NP, an algorithm can have two of these three features, but not all three.

Feature 2+3: polynomial-time exact algorithm (in P)

Feature 1+2: e.g. approximation algorithms

Feature 1+3: Fixed-parameter algorithms

Idea: Aim an exact algorithm but isolate exponential runtime to a specific parameter.
When the value of this parameter is small, the algorithm gets fast.

1 / 5

Fixed Parameter Algorithms

Fixed Parameter Algorithms are an alternative way to deal with NP-hard problems
instead of approximation algorithms.

Three general desired features of an algorithm:

1. “Solve” (NP-)hard problems

2. Run in polynomial time (fast)

3. Get exact solutions

Unless P = NP, an algorithm can have two of these three features, but not all three.

Feature 2+3: polynomial-time exact algorithm (in P)

Feature 1+2: e.g. approximation algorithms

Feature 1+3: Fixed-parameter algorithms

Idea: Aim an exact algorithm but isolate exponential runtime to a specific parameter.
When the value of this parameter is small, the algorithm gets fast.

1 / 5

Fixed Parameter Algorithms

Fixed Parameter Algorithms are an alternative way to deal with NP-hard problems
instead of approximation algorithms.

Three general desired features of an algorithm:

1. “Solve” (NP-)hard problems

2. Run in polynomial time (fast)

3. Get exact solutions

Unless P = NP, an algorithm can have two of these three features, but not all three.

Feature 2+3: polynomial-time exact algorithm (in P)

Feature 1+2: e.g. approximation algorithms

Feature 1+3: Fixed-parameter algorithms

Idea: Aim an exact algorithm but isolate exponential runtime to a specific parameter.
When the value of this parameter is small, the algorithm gets fast.

1 / 5

Fixed Parameter Algorithms

A parameterized problem (Π,k) is a pair consisting of
• decision problem Π and
• a parameter k, i.e., a map k that assigns to each instance I ∈ Π a non-negative

integer k(I).
(often write kI := k(I))

Example:

Decision problem Π.
input: (G,K)

question: Is there a path of length ≤ K between x and y in G ?

parameter could be kG = K or kG = maximum degree in G

Many ”natural” parameter exist, but we are interested in particular one!

Idea: Specify a parameter that isolates the exponential runtime of an exact algorithm for
Π. When the value of this parameter is small, the algorithm gets fast.

2 / 5

Fixed Parameter Algorithms

A parameterized problem (Π,k) is a pair consisting of
• decision problem Π and
• a parameter k, i.e., a map k that assigns to each instance I ∈ Π a non-negative

integer k(I).
(often write kI := k(I))

Example:

Decision problem Π.
input: (G,K)

question: Is there a path of length ≤ K between x and y in G ?

parameter could be kG = K or kG = maximum degree in G

Many ”natural” parameter exist, but we are interested in particular one!

Idea: Specify a parameter that isolates the exponential runtime of an exact algorithm for
Π. When the value of this parameter is small, the algorithm gets fast.

2 / 5

Fixed Parameter Algorithms

A parameterized problem (Π,k) is a pair consisting of
• decision problem Π and
• a parameter k, i.e., a map k that assigns to each instance I ∈ Π a non-negative

integer k(I).
(often write kI := k(I))

Example:

Decision problem Π.
input: (G,K)

question: Is there a path of length ≤ K between x and y in G ?

parameter could be kG = K or kG = maximum degree in G

Many ”natural” parameter exist, but we are interested in particular one!

Idea: Specify a parameter that isolates the exponential runtime of an exact algorithm for
Π. When the value of this parameter is small, the algorithm gets fast.

2 / 5

Fixed Parameter Algorithms

Brute-force Vertex Cover : O(|I|kI) (bad!) (WHITEBOARD)

A parameterized problem (Π,k) is fixed-parameter tractable (FPT) if there is an algorithm
that, for all I ∈ Π, solves/decides I (yes or no) in time ≤ f (kI) · |I|O(1),
where f : N→ N (non negative) and O(1) degree in |I|O(1) is independent of kI and n.

The class FPT consists of all fixed-parameter tractable problems (Π,k).

An FPT-algorithm for Vertex Cover : O(2kI · |I|) (good) (WHITEBOARD)

Question: why not even aiming at an f (kI)+ |I|O(1) time algorithm?

Theorem. ∃ f (kI) · |I|c algorithm ⇐⇒ ∃ f̃ (kI)+ |I|c̃ algorithm (WHITEBOARD)

3 / 5

Fixed Parameter Algorithms

Brute-force Vertex Cover : O(|I|kI) (bad!) (WHITEBOARD)

A parameterized problem (Π,k) is fixed-parameter tractable (FPT) if there is an algorithm
that, for all I ∈ Π, solves/decides I (yes or no) in time ≤ f (kI) · |I|O(1),
where f : N→ N (non negative) and O(1) degree in |I|O(1) is independent of kI and n.

The class FPT consists of all fixed-parameter tractable problems (Π,k).

An FPT-algorithm for Vertex Cover : O(2kI · |I|) (good) (WHITEBOARD)

Question: why not even aiming at an f (kI)+ |I|O(1) time algorithm?

Theorem. ∃ f (kI) · |I|c algorithm ⇐⇒ ∃ f̃ (kI)+ |I|c̃ algorithm (WHITEBOARD)

3 / 5

Fixed Parameter Algorithms

Brute-force Vertex Cover : O(|I|kI) (bad!) (WHITEBOARD)

A parameterized problem (Π,k) is fixed-parameter tractable (FPT) if there is an algorithm
that, for all I ∈ Π, solves/decides I (yes or no) in time ≤ f (kI) · |I|O(1),
where f : N→ N (non negative) and O(1) degree in |I|O(1) is independent of kI and n.

The class FPT consists of all fixed-parameter tractable problems (Π,k).

An FPT-algorithm for Vertex Cover : O(2kI · |I|) (good) (WHITEBOARD)

Question: why not even aiming at an f (kI)+ |I|O(1) time algorithm?

Theorem. ∃ f (kI) · |I|c algorithm ⇐⇒ ∃ f̃ (kI)+ |I|c̃ algorithm (WHITEBOARD)

3 / 5

Fixed Parameter Algorithms

Brute-force Vertex Cover : O(|I|kI) (bad!) (WHITEBOARD)

A parameterized problem (Π,k) is fixed-parameter tractable (FPT) if there is an algorithm
that, for all I ∈ Π, solves/decides I (yes or no) in time ≤ f (kI) · |I|O(1),
where f : N→ N (non negative) and O(1) degree in |I|O(1) is independent of kI and n.

The class FPT consists of all fixed-parameter tractable problems (Π,k).

An FPT-algorithm for Vertex Cover : O(2kI · |I|) (good) (WHITEBOARD)

Question: why not even aiming at an f (kI)+ |I|O(1) time algorithm?

Theorem. ∃ f (kI) · |I|c algorithm ⇐⇒ ∃ f̃ (kI)+ |I|c̃ algorithm (WHITEBOARD)

3 / 5

Fixed Parameter Algorithms

Brute-force Vertex Cover : O(|I|kI) (bad!) (WHITEBOARD)

A parameterized problem (Π,k) is fixed-parameter tractable (FPT) if there is an algorithm
that, for all I ∈ Π, solves/decides I (yes or no) in time ≤ f (kI) · |I|O(1),
where f : N→ N (non negative) and O(1) degree in |I|O(1) is independent of kI and n.

The class FPT consists of all fixed-parameter tractable problems (Π,k).

An FPT-algorithm for Vertex Cover : O(2kI · |I|) (good) (WHITEBOARD)

Question: why not even aiming at an f (kI)+ |I|O(1) time algorithm?

Theorem. ∃ f (kI) · |I|c algorithm ⇐⇒ ∃ f̃ (kI)+ |I|c̃ algorithm (WHITEBOARD)

3 / 5

Fixed Parameter Algorithms

To show that a parameterized problem is FPT there are two general techniques.
General Techniques:

• Bounded search-tree
General Idea: ”exhaustive” search (i.e., full enumeration of all possible solutions) is
conducted in a suitable search tree with limited depth.
have seen vertex-cover example

• Kernelization
General Idea: reduce instance to a (possibly still NP-hard difficult) problem kernel
by applying various rules.
let’s focus on this now

4 / 5

Kernelization

General Idea: reduce instance to a (possibly still NP-hard difficult) problem kernel by
applying various rules.

Kernelization is transformation of (I,kI) ∈ (Π,k) to an instance (I′,kI′) ∈ (Π,k) such that
• I is yes-instance of Π ⇐⇒ I′ is yes-instance of Π
• |I′| ≤ f̃ (kI) for some f̃ : N→ N, i.e., size of instance I′ only depends on parameter

kI

• kI′ ≤ kI , i.e., parameter k(I′) does not increase
• Transformation can be achieved in polynomial time

Theorem. A problem (Π,k) is FPT ⇐⇒ there exist a Kernelization of (Π,k)
(WHITEBOARD)

Kernelization for Vertex Cover : (WHITEBOARD)

5 / 5

