
Algorithms and Complexity
Maximum Flow and Flow Networks

Marc Hellmuth

University of Stockholm

• a material (e.g. a liquid, electrical current, countable items) is produced at a source
• it is moving through a system (e.g. of pipes, wires, roads) that is modeled as a directed graph
• each edge has a given capacity (e.g. diameter of pipe, wire, capacity of road) that limits the

amount of material that can pass this edge
• the system is in a steady state, i.e. the amount of material leaving a vertex is equal to the

amount of material entering the vertex [= no possibility to store material]
• all material ends at a vertex called target, where it is consumed

1 / 8

• a material (e.g. a liquid, electrical current, countable items) is produced at a source

• it is moving through a system (e.g. of pipes, wires, roads) that is modeled as a directed graph
• each edge has a given capacity (e.g. diameter of pipe, wire, capacity of road) that limits the

amount of material that can pass this edge
• the system is in a steady state, i.e. the amount of material leaving a vertex is equal to the

amount of material entering the vertex [= no possibility to store material]
• all material ends at a vertex called target, where it is consumed

1 / 8

• a material (e.g. a liquid, electrical current, countable items) is produced at a source
• it is moving through a system (e.g. of pipes, wires, roads) that is modeled as a directed graph

• each edge has a given capacity (e.g. diameter of pipe, wire, capacity of road) that limits the
amount of material that can pass this edge

• the system is in a steady state, i.e. the amount of material leaving a vertex is equal to the
amount of material entering the vertex [= no possibility to store material]

• all material ends at a vertex called target, where it is consumed

1 / 8

• a material (e.g. a liquid, electrical current, countable items) is produced at a source
• it is moving through a system (e.g. of pipes, wires, roads) that is modeled as a directed graph
• each edge has a given capacity (e.g. diameter of pipe, wire, capacity of road) that limits the

amount of material that can pass this edge

• the system is in a steady state, i.e. the amount of material leaving a vertex is equal to the
amount of material entering the vertex [= no possibility to store material]

• all material ends at a vertex called target, where it is consumed

1 / 8

• a material (e.g. a liquid, electrical current, countable items) is produced at a source
• it is moving through a system (e.g. of pipes, wires, roads) that is modeled as a directed graph
• each edge has a given capacity (e.g. diameter of pipe, wire, capacity of road) that limits the

amount of material that can pass this edge
• the system is in a steady state, i.e. the amount of material leaving a vertex is equal to the

amount of material entering the vertex [= no possibility to store material]

• all material ends at a vertex called target, where it is consumed

1 / 8

• a material (e.g. a liquid, electrical current, countable items) is produced at a source
• it is moving through a system (e.g. of pipes, wires, roads) that is modeled as a directed graph
• each edge has a given capacity (e.g. diameter of pipe, wire, capacity of road) that limits the

amount of material that can pass this edge
• the system is in a steady state, i.e. the amount of material leaving a vertex is equal to the

amount of material entering the vertex [= no possibility to store material]
• all material ends at a vertex called target, where it is consumed

1 / 8

Flow Network and Maximum Flow
A flow network G = (V,E) is a directed graph such that
• G has no self-loops
• (u,v) ∈ E⇒ (v,u) 6∈ E (∀u,v ∈ V)
• V has two distinct vertices, a source s and a target t
• ∀v ∈ V there is a path s v t

For a di-graph G = (V,E) a capacity funktion is a map c : V×V→ R such that
• each edge (u,v) ∈ E has a capacity c(u,v)≥ 0
• we define c(u,v) := 0 if (u,v) 6∈ E

For a di-graph G = (V,E) with cap.fct. c, a flow in G is a function f : V×V→ R such that
F1 capacity constraint: 0≤ f (u,v)≤ c(u,v) (∀u,v ∈ V)
F2 flow conservation: ∑v∈V f (u,v) = ∑v∈V f (v,u) (u ∈ V \{s, t})

Obs. 1: (u,v) /∈ E =⇒ c(u,v) = 0 =⇒ f (u,v) = 0

Aim is to maximize flow, i.e., maximize

|f | := ∑
v∈V

f (s,v)−∑
v∈V

f (v,s).

In practice, we often have multiple sourses, targets or anti-parallel edges – no problem!
[WHITEBOARD]

2 / 8

Flow Network and Maximum Flow
A flow network G = (V,E) is a directed graph such that
• G has no self-loops
• (u,v) ∈ E⇒ (v,u) 6∈ E (∀u,v ∈ V)
• V has two distinct vertices, a source s and a target t
• ∀v ∈ V there is a path s v t

For a di-graph G = (V,E) a capacity funktion is a map c : V×V→ R such that
• each edge (u,v) ∈ E has a capacity c(u,v)≥ 0
• we define c(u,v) := 0 if (u,v) 6∈ E

For a di-graph G = (V,E) with cap.fct. c, a flow in G is a function f : V×V→ R such that
F1 capacity constraint: 0≤ f (u,v)≤ c(u,v) (∀u,v ∈ V)
F2 flow conservation: ∑v∈V f (u,v) = ∑v∈V f (v,u) (u ∈ V \{s, t})

Obs. 1: (u,v) /∈ E =⇒ c(u,v) = 0 =⇒ f (u,v) = 0

Aim is to maximize flow, i.e., maximize

|f | := ∑
v∈V

f (s,v)−∑
v∈V

f (v,s).

In practice, we often have multiple sourses, targets or anti-parallel edges – no problem!
[WHITEBOARD]

2 / 8

Flow Network and Maximum Flow
A flow network G = (V,E) is a directed graph such that
• G has no self-loops
• (u,v) ∈ E⇒ (v,u) 6∈ E (∀u,v ∈ V)
• V has two distinct vertices, a source s and a target t
• ∀v ∈ V there is a path s v t

For a di-graph G = (V,E) a capacity funktion is a map c : V×V→ R such that
• each edge (u,v) ∈ E has a capacity c(u,v)≥ 0
• we define c(u,v) := 0 if (u,v) 6∈ E

For a di-graph G = (V,E) with cap.fct. c, a flow in G is a function f : V×V→ R such that
F1 capacity constraint: 0≤ f (u,v)≤ c(u,v) (∀u,v ∈ V)
F2 flow conservation: ∑v∈V f (u,v) = ∑v∈V f (v,u) (u ∈ V \{s, t})

Obs. 1: (u,v) /∈ E =⇒ c(u,v) = 0 =⇒ f (u,v) = 0

Aim is to maximize flow, i.e., maximize

|f | := ∑
v∈V

f (s,v)−∑
v∈V

f (v,s).

In practice, we often have multiple sourses, targets or anti-parallel edges – no problem!
[WHITEBOARD]

2 / 8

Flow Network and Maximum Flow
A flow network G = (V,E) is a directed graph such that
• G has no self-loops
• (u,v) ∈ E⇒ (v,u) 6∈ E (∀u,v ∈ V)
• V has two distinct vertices, a source s and a target t
• ∀v ∈ V there is a path s v t

For a di-graph G = (V,E) a capacity funktion is a map c : V×V→ R such that
• each edge (u,v) ∈ E has a capacity c(u,v)≥ 0
• we define c(u,v) := 0 if (u,v) 6∈ E

For a di-graph G = (V,E) with cap.fct. c, a flow in G is a function f : V×V→ R such that
F1 capacity constraint: 0≤ f (u,v)≤ c(u,v) (∀u,v ∈ V)
F2 flow conservation: ∑v∈V f (u,v) = ∑v∈V f (v,u) (u ∈ V \{s, t})

Obs. 1: (u,v) /∈ E =⇒ c(u,v) = 0 =⇒ f (u,v) = 0

Aim is to maximize flow, i.e., maximize

|f | := ∑
v∈V

f (s,v)−∑
v∈V

f (v,s).

In practice, we often have multiple sourses, targets or anti-parallel edges – no problem!
[WHITEBOARD]

2 / 8

Flow Network and Maximum Flow
A flow network G = (V,E) is a directed graph such that
• G has no self-loops
• (u,v) ∈ E⇒ (v,u) 6∈ E (∀u,v ∈ V)
• V has two distinct vertices, a source s and a target t
• ∀v ∈ V there is a path s v t

For a di-graph G = (V,E) a capacity funktion is a map c : V×V→ R such that
• each edge (u,v) ∈ E has a capacity c(u,v)≥ 0
• we define c(u,v) := 0 if (u,v) 6∈ E

For a di-graph G = (V,E) with cap.fct. c, a flow in G is a function f : V×V→ R such that
F1 capacity constraint: 0≤ f (u,v)≤ c(u,v) (∀u,v ∈ V)
F2 flow conservation: ∑v∈V f (u,v) = ∑v∈V f (v,u) (u ∈ V \{s, t})

Obs. 1: (u,v) /∈ E =⇒ c(u,v) = 0 =⇒ f (u,v) = 0

Aim is to maximize flow, i.e., maximize

|f | := ∑
v∈V

f (s,v)−∑
v∈V

f (v,s).

In practice, we often have multiple sourses, targets or anti-parallel edges – no problem!
[WHITEBOARD]

2 / 8

Flow Network and Maximum Flow
A flow network G = (V,E) is a directed graph such that
• G has no self-loops
• (u,v) ∈ E⇒ (v,u) 6∈ E (∀u,v ∈ V)
• V has two distinct vertices, a source s and a target t
• ∀v ∈ V there is a path s v t

For a di-graph G = (V,E) a capacity funktion is a map c : V×V→ R such that
• each edge (u,v) ∈ E has a capacity c(u,v)≥ 0
• we define c(u,v) := 0 if (u,v) 6∈ E

For a di-graph G = (V,E) with cap.fct. c, a flow in G is a function f : V×V→ R such that
F1 capacity constraint: 0≤ f (u,v)≤ c(u,v) (∀u,v ∈ V)
F2 flow conservation: ∑v∈V f (u,v) = ∑v∈V f (v,u) (u ∈ V \{s, t})

Obs. 1: (u,v) /∈ E =⇒ c(u,v) = 0 =⇒ f (u,v) = 0

Aim is to maximize flow, i.e., maximize

|f | := ∑
v∈V

f (s,v)−∑
v∈V

f (v,s).

In practice, we often have multiple sourses, targets or anti-parallel edges – no problem!
[WHITEBOARD] 2 / 8

Ford-Fulkerson Method and Residual Network
Given flow network G = (V,E) with source s, target t and capacity fct. c.

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

Let f be a flow in G. Then for two vertices u,v the residual capacity is defined as

cf (u,v) =


c(u,v)− f (u,v) , if (u,v) ∈ E
f (v,u) , if (v,u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V,Ef), where

Ef = {(u,v) ∈ V×V |cf (u,v)> 0}.

Intuition: Gf consists of all edges of G where we can increase flow and edges (non-edges of G) to
represent the possibilty to decrease flow, i.e., an edge to admit positive flow in opposite direction

Obs. 2: |Ef | ≤ 2|E|

3 / 8

Ford-Fulkerson Method and Residual Network
Given flow network G = (V,E) with source s, target t and capacity fct. c.

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

Let f be a flow in G. Then for two vertices u,v the residual capacity is defined as

cf (u,v) =


c(u,v)− f (u,v) , if (u,v) ∈ E
f (v,u) , if (v,u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V,Ef), where

Ef = {(u,v) ∈ V×V |cf (u,v)> 0}.

Intuition: Gf consists of all edges of G where we can increase flow and edges (non-edges of G) to
represent the possibilty to decrease flow, i.e., an edge to admit positive flow in opposite direction

Obs. 2: |Ef | ≤ 2|E|

3 / 8

Ford-Fulkerson Method and Residual Network
Given flow network G = (V,E) with source s, target t and capacity fct. c.

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

Let f be a flow in G. Then for two vertices u,v the residual capacity is defined as

cf (u,v) =


c(u,v)− f (u,v) , if (u,v) ∈ E
f (v,u) , if (v,u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V,Ef), where

Ef = {(u,v) ∈ V×V |cf (u,v)> 0}.

Intuition: Gf consists of all edges of G where we can increase flow and edges (non-edges of G) to
represent the possibilty to decrease flow, i.e., an edge to admit positive flow in opposite direction

Obs. 2: |Ef | ≤ 2|E|

3 / 8

Ford-Fulkerson Method and Residual Network
Given flow network G = (V,E) with source s, target t and capacity fct. c.

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

Let f be a flow in G. Then for two vertices u,v the residual capacity is defined as

cf (u,v) =


c(u,v)− f (u,v) , if (u,v) ∈ E
f (v,u) , if (v,u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V,Ef), where

Ef = {(u,v) ∈ V×V |cf (u,v)> 0}.

Intuition: Gf consists of all edges of G where we can increase flow and edges (non-edges of G) to
represent the possibilty to decrease flow, i.e., an edge to admit positive flow in opposite direction

Obs. 2: |Ef | ≤ 2|E|

3 / 8

Ford-Fulkerson Method and Residual Network
Given flow network G = (V,E) with source s, target t and capacity fct. c.

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

Let f be a flow in G. Then for two vertices u,v the residual capacity is defined as

cf (u,v) =


c(u,v)− f (u,v) , if (u,v) ∈ E
f (v,u) , if (v,u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V,Ef), where

Ef = {(u,v) ∈ V×V |cf (u,v)> 0}.

Intuition: Gf consists of all edges of G where we can increase flow and edges (non-edges of G) to
represent the possibilty to decrease flow, i.e., an edge to admit positive flow in opposite direction

Obs. 2: |Ef | ≤ 2|E|

3 / 8

Ford-Fulkerson Method and Residual Network
Given flow network G = (V,E) with source s, target t and capacity fct. c.

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

Let f be a flow in G. Then for two vertices u,v the residual capacity is defined as

cf (u,v) =


c(u,v)− f (u,v) , if (u,v) ∈ E
f (v,u) , if (v,u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V,Ef), where

Ef = {(u,v) ∈ V×V |cf (u,v)> 0}.

Intuition: Gf consists of all edges of G where we can increase flow and edges (non-edges of G) to
represent the possibilty to decrease flow, i.e., an edge to admit positive flow in opposite direction

Obs. 2: |Ef | ≤ 2|E|

3 / 8

Ford-Fulkerson Method and Residual Network
Given flow network G = (V,E) with source s, target t and capacity fct. c.

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

Let f be a flow in G. Then for two vertices u,v the residual capacity is defined as

cf (u,v) =


c(u,v)− f (u,v) , if (u,v) ∈ E
f (v,u) , if (v,u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V,Ef), where

Ef = {(u,v) ∈ V×V |cf (u,v)> 0}.

Intuition: Gf consists of all edges of G where we can increase flow and edges (non-edges of G) to
represent the possibilty to decrease flow, i.e., an edge to admit positive flow in opposite direction

Obs. 2: |Ef | ≤ 2|E|

3 / 8

Ford-Fulkerson Method and Residual Network
Given flow network G = (V,E) with source s, target t and capacity fct. c.

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

Let f be a flow in G. Then for two vertices u,v the residual capacity is defined as

cf (u,v) =


c(u,v)− f (u,v) , if (u,v) ∈ E
f (v,u) , if (v,u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V,Ef), where

Ef = {(u,v) ∈ V×V |cf (u,v)> 0}.

Intuition: Gf consists of all edges of G where we can increase flow and edges (non-edges of G) to
represent the possibilty to decrease flow, i.e., an edge to admit positive flow in opposite direction

Obs. 2: |Ef | ≤ 2|E|

3 / 8

Ford-Fulkerson Method and Residual Network
Given flow network G = (V,E) with source s, target t and capacity fct. c.

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

Let f be a flow in G. Then for two vertices u,v the residual capacity is defined as

cf (u,v) =


c(u,v)− f (u,v) , if (u,v) ∈ E
f (v,u) , if (v,u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V,Ef), where

Ef = {(u,v) ∈ V×V |cf (u,v)> 0}.

Intuition: Gf consists of all edges of G where we can increase flow and edges (non-edges of G) to
represent the possibilty to decrease flow, i.e., an edge to admit positive flow in opposite direction

Obs. 2: |Ef | ≤ 2|E|

3 / 8

Ford-Fulkerson Method and Residual Network
Given flow network G = (V,E) with source s, target t and capacity fct. c.

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

Let f be a flow in G. Then for two vertices u,v the residual capacity is defined as

cf (u,v) =


c(u,v)− f (u,v) , if (u,v) ∈ E
f (v,u) , if (v,u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V,Ef), where

Ef = {(u,v) ∈ V×V |cf (u,v)> 0}.

Intuition: Gf consists of all edges of G where we can increase flow and edges (non-edges of G) to
represent the possibilty to decrease flow, i.e., an edge to admit positive flow in opposite direction

Obs. 2: |Ef | ≤ 2|E|

3 / 8

Flows in the Residual Network and Augmentation

A flow f ′ in the residual network Gf can be used to add flow to flow f in the original flow network G.

Let f be a flow in G and f ′ be a flow in the residual network Gf . Define f ↑ f ′ : V×V→ R – the
augmentation of f by f ′ – as follows

(f ↑ f ′)(u,v) =
{

f (u,v)+ f ′(u,v)− f ′(v,u) , if (u,v) ∈ E
0 , otherwise.

Intuition: Increase flow f (u,v) by f ′(u,v) and decrease by f ′(v,u)

Lemma 1: Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f
and f ′ be flow in Gf . Then, f ↑ f ′ is a flow in G and satisfies |f ↑ f ′|= |f |+ |f ′|.

[Proof - WHITEBOARD]

4 / 8

Flows in the Residual Network and Augmentation

A flow f ′ in the residual network Gf can be used to add flow to flow f in the original flow network G.

Let f be a flow in G and f ′ be a flow in the residual network Gf . Define f ↑ f ′ : V×V→ R – the
augmentation of f by f ′ – as follows

(f ↑ f ′)(u,v) =
{

f (u,v)+ f ′(u,v)− f ′(v,u) , if (u,v) ∈ E
0 , otherwise.

Intuition: Increase flow f (u,v) by f ′(u,v) and decrease by f ′(v,u)

Lemma 1: Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f
and f ′ be flow in Gf . Then, f ↑ f ′ is a flow in G and satisfies |f ↑ f ′|= |f |+ |f ′|.

[Proof - WHITEBOARD]

4 / 8

Flows in the Residual Network and Augmentation

A flow f ′ in the residual network Gf can be used to add flow to flow f in the original flow network G.

Let f be a flow in G and f ′ be a flow in the residual network Gf . Define f ↑ f ′ : V×V→ R – the
augmentation of f by f ′ – as follows

(f ↑ f ′)(u,v) =
{

f (u,v)+ f ′(u,v)− f ′(v,u) , if (u,v) ∈ E
0 , otherwise.

Intuition: Increase flow f (u,v) by f ′(u,v) and decrease by f ′(v,u)

Lemma 1: Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f
and f ′ be flow in Gf . Then, f ↑ f ′ is a flow in G and satisfies |f ↑ f ′|= |f |+ |f ′|.

[Proof - WHITEBOARD]

4 / 8

Flows in the Residual Network and Augmentation

A flow f ′ in the residual network Gf can be used to add flow to flow f in the original flow network G.

Let f be a flow in G and f ′ be a flow in the residual network Gf . Define f ↑ f ′ : V×V→ R – the
augmentation of f by f ′ – as follows

(f ↑ f ′)(u,v) =
{

f (u,v)+ f ′(u,v)− f ′(v,u) , if (u,v) ∈ E
0 , otherwise.

Intuition: Increase flow f (u,v) by f ′(u,v) and decrease by f ′(v,u)

Lemma 1: Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f
and f ′ be flow in Gf . Then, f ↑ f ′ is a flow in G and satisfies |f ↑ f ′|= |f |+ |f ′|.

[Proof - WHITEBOARD]

4 / 8

Flows in the Residual Network and Augmentation

Given flow network G = (V,E) with source s, target t and capacity fct. c and flow f .

• An augmenting path P is a simple st-path in Gf .
• The residual capacity of P is

cf (P) = min{cf (u,v) | (u,v) is on P}.

Obs. 3: (u,v) is an edge in Gf =⇒ cf (u,v)> 0 =⇒ cf (P)> 0

Obs. 4: Maximum value for which we can increase flow along P in Gf is cf (P).

• The flow fp : V×V→ R defined by augmenting path P is

fP(u,v) =
{

cf (P) , if (u,v) is on P
0 , otherwise.

Lemma 2: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, fP is a flow in Gf with value |fP|= cf (P)> 0.

[Proof - WHITEBOARD]

Cor. 1: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, |f ↑ fP|= |f |+ |fP|> |f |.

5 / 8

Flows in the Residual Network and Augmentation

Given flow network G = (V,E) with source s, target t and capacity fct. c and flow f .

• An augmenting path P is a simple st-path in Gf .
• The residual capacity of P is

cf (P) = min{cf (u,v) | (u,v) is on P}.

Obs. 3: (u,v) is an edge in Gf =⇒ cf (u,v)> 0 =⇒ cf (P)> 0

Obs. 4: Maximum value for which we can increase flow along P in Gf is cf (P).

• The flow fp : V×V→ R defined by augmenting path P is

fP(u,v) =
{

cf (P) , if (u,v) is on P
0 , otherwise.

Lemma 2: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, fP is a flow in Gf with value |fP|= cf (P)> 0.

[Proof - WHITEBOARD]

Cor. 1: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, |f ↑ fP|= |f |+ |fP|> |f |.

5 / 8

Flows in the Residual Network and Augmentation

Given flow network G = (V,E) with source s, target t and capacity fct. c and flow f .

• An augmenting path P is a simple st-path in Gf .
• The residual capacity of P is

cf (P) = min{cf (u,v) | (u,v) is on P}.

Obs. 3: (u,v) is an edge in Gf =⇒ cf (u,v)> 0 =⇒ cf (P)> 0

Obs. 4: Maximum value for which we can increase flow along P in Gf is cf (P).

• The flow fp : V×V→ R defined by augmenting path P is

fP(u,v) =
{

cf (P) , if (u,v) is on P
0 , otherwise.

Lemma 2: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, fP is a flow in Gf with value |fP|= cf (P)> 0.

[Proof - WHITEBOARD]

Cor. 1: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, |f ↑ fP|= |f |+ |fP|> |f |.

5 / 8

Flows in the Residual Network and Augmentation

Given flow network G = (V,E) with source s, target t and capacity fct. c and flow f .

• An augmenting path P is a simple st-path in Gf .
• The residual capacity of P is

cf (P) = min{cf (u,v) | (u,v) is on P}.

Obs. 3: (u,v) is an edge in Gf =⇒ cf (u,v)> 0 =⇒ cf (P)> 0

Obs. 4: Maximum value for which we can increase flow along P in Gf is cf (P).

• The flow fp : V×V→ R defined by augmenting path P is

fP(u,v) =
{

cf (P) , if (u,v) is on P
0 , otherwise.

Lemma 2: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, fP is a flow in Gf with value |fP|= cf (P)> 0.

[Proof - WHITEBOARD]

Cor. 1: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, |f ↑ fP|= |f |+ |fP|> |f |.

5 / 8

Flows in the Residual Network and Augmentation

Given flow network G = (V,E) with source s, target t and capacity fct. c and flow f .

• An augmenting path P is a simple st-path in Gf .
• The residual capacity of P is

cf (P) = min{cf (u,v) | (u,v) is on P}.

Obs. 3: (u,v) is an edge in Gf =⇒ cf (u,v)> 0 =⇒ cf (P)> 0

Obs. 4: Maximum value for which we can increase flow along P in Gf is cf (P).

• The flow fp : V×V→ R defined by augmenting path P is

fP(u,v) =
{

cf (P) , if (u,v) is on P
0 , otherwise.

Lemma 2: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, fP is a flow in Gf with value |fP|= cf (P)> 0.

[Proof - WHITEBOARD]

Cor. 1: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, |f ↑ fP|= |f |+ |fP|> |f |.

5 / 8

Flows in the Residual Network and Augmentation

Given flow network G = (V,E) with source s, target t and capacity fct. c and flow f .

• An augmenting path P is a simple st-path in Gf .
• The residual capacity of P is

cf (P) = min{cf (u,v) | (u,v) is on P}.

Obs. 3: (u,v) is an edge in Gf =⇒ cf (u,v)> 0 =⇒ cf (P)> 0

Obs. 4: Maximum value for which we can increase flow along P in Gf is cf (P).

• The flow fp : V×V→ R defined by augmenting path P is

fP(u,v) =
{

cf (P) , if (u,v) is on P
0 , otherwise.

Lemma 2: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, fP is a flow in Gf with value |fP|= cf (P)> 0.

[Proof - WHITEBOARD]

Cor. 1: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, |f ↑ fP|= |f |+ |fP|> |f |.

5 / 8

Flows in the Residual Network and Augmentation

Given flow network G = (V,E) with source s, target t and capacity fct. c and flow f .

• An augmenting path P is a simple st-path in Gf .
• The residual capacity of P is

cf (P) = min{cf (u,v) | (u,v) is on P}.

Obs. 3: (u,v) is an edge in Gf =⇒ cf (u,v)> 0 =⇒ cf (P)> 0

Obs. 4: Maximum value for which we can increase flow along P in Gf is cf (P).

• The flow fp : V×V→ R defined by augmenting path P is

fP(u,v) =
{

cf (P) , if (u,v) is on P
0 , otherwise.

Lemma 2: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, fP is a flow in Gf with value |fP|= cf (P)> 0.

[Proof - WHITEBOARD]

Cor. 1: Given flow network G = (V,E) with source s, target t, capacity fct. c, flow f and
P be an augmenting path in Gf . Then, |f ↑ fP|= |f |+ |fP|> |f |.

5 / 8

To recall ..

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

• Does it terminate?
• If it terminates, do we get a maximum flow?

Show, that if it terminates, then we a mximum flow f of G is returned.
To this end, we need the definition of CUTS!

6 / 8

To recall ..

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

• Does it terminate?
• If it terminates, do we get a maximum flow?

Show, that if it terminates, then we a mximum flow f of G is returned.
To this end, we need the definition of CUTS!

6 / 8

To recall ..

FORDFULKERSON METHOD(G, s, t, c)
1: Init f (u,v) = 0 for all (u,v) ∈ E
2: while ∃ augmenting path P in residual network Gf do
3: Augment flow f along P
4: return f

• Does it terminate?
• If it terminates, do we get a maximum flow?

Show, that if it terminates, then we a mximum flow f of G is returned.
To this end, we need the definition of CUTS!

6 / 8

Cuts of Flow Networks
Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f .

• A cut (S,T) of G is a partition of V into S and T = V \S such that s ∈ S and t ∈ T.
• The net flow f (S,T) across the cut (S,T) is

f (S,T) = ∑
u∈S

∑
v∈T

f (u,v)−∑
u∈S

∑
v∈T

f (v,u).

• The capacity c(S,T) of the cut (S,T) is

c(S,T) = ∑
u∈S

∑
v∈T

c(u,v).

• A minimum cut of a G is a cut whose capacity is minimal over all cuts of the network.

Lemma 3: Given flow network G with source s, target t, capacity fct. c and flow f .
Then, |f |= f (S,T) for any cut (S,T) of G.

[Proof - WHITEBOARD]

Cor. 2: |f | ≤ c(S,T) for any cut (S,T) of G.

Thm [Max-Flow Min-Cut Theorem] Given flow network G with source s, target t, capacity fct. c
and flow f . The following statements are quivalent:

1) f is a maximum flow in G.

2) The residual network Gf contains no augmenting paths.

3) |f |= c(S,T) for some cut (S,T) of G.
[Proof - WHITEBOARD]

7 / 8

Cuts of Flow Networks
Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f .
• A cut (S,T) of G is a partition of V into S and T = V \S such that s ∈ S and t ∈ T.

• The net flow f (S,T) across the cut (S,T) is

f (S,T) = ∑
u∈S

∑
v∈T

f (u,v)−∑
u∈S

∑
v∈T

f (v,u).

• The capacity c(S,T) of the cut (S,T) is

c(S,T) = ∑
u∈S

∑
v∈T

c(u,v).

• A minimum cut of a G is a cut whose capacity is minimal over all cuts of the network.

Lemma 3: Given flow network G with source s, target t, capacity fct. c and flow f .
Then, |f |= f (S,T) for any cut (S,T) of G.

[Proof - WHITEBOARD]

Cor. 2: |f | ≤ c(S,T) for any cut (S,T) of G.

Thm [Max-Flow Min-Cut Theorem] Given flow network G with source s, target t, capacity fct. c
and flow f . The following statements are quivalent:

1) f is a maximum flow in G.

2) The residual network Gf contains no augmenting paths.

3) |f |= c(S,T) for some cut (S,T) of G.
[Proof - WHITEBOARD]

7 / 8

Cuts of Flow Networks
Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f .
• A cut (S,T) of G is a partition of V into S and T = V \S such that s ∈ S and t ∈ T.
• The net flow f (S,T) across the cut (S,T) is

f (S,T) = ∑
u∈S

∑
v∈T

f (u,v)−∑
u∈S

∑
v∈T

f (v,u).

• The capacity c(S,T) of the cut (S,T) is

c(S,T) = ∑
u∈S

∑
v∈T

c(u,v).

• A minimum cut of a G is a cut whose capacity is minimal over all cuts of the network.

Lemma 3: Given flow network G with source s, target t, capacity fct. c and flow f .
Then, |f |= f (S,T) for any cut (S,T) of G.

[Proof - WHITEBOARD]

Cor. 2: |f | ≤ c(S,T) for any cut (S,T) of G.

Thm [Max-Flow Min-Cut Theorem] Given flow network G with source s, target t, capacity fct. c
and flow f . The following statements are quivalent:

1) f is a maximum flow in G.

2) The residual network Gf contains no augmenting paths.

3) |f |= c(S,T) for some cut (S,T) of G.
[Proof - WHITEBOARD]

7 / 8

Cuts of Flow Networks
Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f .
• A cut (S,T) of G is a partition of V into S and T = V \S such that s ∈ S and t ∈ T.
• The net flow f (S,T) across the cut (S,T) is

f (S,T) = ∑
u∈S

∑
v∈T

f (u,v)−∑
u∈S

∑
v∈T

f (v,u).

• The capacity c(S,T) of the cut (S,T) is

c(S,T) = ∑
u∈S

∑
v∈T

c(u,v).

• A minimum cut of a G is a cut whose capacity is minimal over all cuts of the network.

Lemma 3: Given flow network G with source s, target t, capacity fct. c and flow f .
Then, |f |= f (S,T) for any cut (S,T) of G.

[Proof - WHITEBOARD]

Cor. 2: |f | ≤ c(S,T) for any cut (S,T) of G.

Thm [Max-Flow Min-Cut Theorem] Given flow network G with source s, target t, capacity fct. c
and flow f . The following statements are quivalent:

1) f is a maximum flow in G.

2) The residual network Gf contains no augmenting paths.

3) |f |= c(S,T) for some cut (S,T) of G.
[Proof - WHITEBOARD]

7 / 8

Cuts of Flow Networks
Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f .
• A cut (S,T) of G is a partition of V into S and T = V \S such that s ∈ S and t ∈ T.
• The net flow f (S,T) across the cut (S,T) is

f (S,T) = ∑
u∈S

∑
v∈T

f (u,v)−∑
u∈S

∑
v∈T

f (v,u).

• The capacity c(S,T) of the cut (S,T) is

c(S,T) = ∑
u∈S

∑
v∈T

c(u,v).

• A minimum cut of a G is a cut whose capacity is minimal over all cuts of the network.

Lemma 3: Given flow network G with source s, target t, capacity fct. c and flow f .
Then, |f |= f (S,T) for any cut (S,T) of G.

[Proof - WHITEBOARD]

Cor. 2: |f | ≤ c(S,T) for any cut (S,T) of G.

Thm [Max-Flow Min-Cut Theorem] Given flow network G with source s, target t, capacity fct. c
and flow f . The following statements are quivalent:

1) f is a maximum flow in G.

2) The residual network Gf contains no augmenting paths.

3) |f |= c(S,T) for some cut (S,T) of G.
[Proof - WHITEBOARD]

7 / 8

Cuts of Flow Networks
Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f .
• A cut (S,T) of G is a partition of V into S and T = V \S such that s ∈ S and t ∈ T.
• The net flow f (S,T) across the cut (S,T) is

f (S,T) = ∑
u∈S

∑
v∈T

f (u,v)−∑
u∈S

∑
v∈T

f (v,u).

• The capacity c(S,T) of the cut (S,T) is

c(S,T) = ∑
u∈S

∑
v∈T

c(u,v).

• A minimum cut of a G is a cut whose capacity is minimal over all cuts of the network.

Lemma 3: Given flow network G with source s, target t, capacity fct. c and flow f .
Then, |f |= f (S,T) for any cut (S,T) of G.

[Proof - WHITEBOARD]

Cor. 2: |f | ≤ c(S,T) for any cut (S,T) of G.

Thm [Max-Flow Min-Cut Theorem] Given flow network G with source s, target t, capacity fct. c
and flow f . The following statements are quivalent:

1) f is a maximum flow in G.

2) The residual network Gf contains no augmenting paths.

3) |f |= c(S,T) for some cut (S,T) of G.
[Proof - WHITEBOARD]

7 / 8

Cuts of Flow Networks
Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f .
• A cut (S,T) of G is a partition of V into S and T = V \S such that s ∈ S and t ∈ T.
• The net flow f (S,T) across the cut (S,T) is

f (S,T) = ∑
u∈S

∑
v∈T

f (u,v)−∑
u∈S

∑
v∈T

f (v,u).

• The capacity c(S,T) of the cut (S,T) is

c(S,T) = ∑
u∈S

∑
v∈T

c(u,v).

• A minimum cut of a G is a cut whose capacity is minimal over all cuts of the network.

Lemma 3: Given flow network G with source s, target t, capacity fct. c and flow f .
Then, |f |= f (S,T) for any cut (S,T) of G.

[Proof - WHITEBOARD]

Cor. 2: |f | ≤ c(S,T) for any cut (S,T) of G.

Thm [Max-Flow Min-Cut Theorem] Given flow network G with source s, target t, capacity fct. c
and flow f . The following statements are quivalent:

1) f is a maximum flow in G.

2) The residual network Gf contains no augmenting paths.

3) |f |= c(S,T) for some cut (S,T) of G.
[Proof - WHITEBOARD]

7 / 8

Cuts of Flow Networks
Given flow network G = (V,E) with source s, target t, capacity fct. c and flow f .
• A cut (S,T) of G is a partition of V into S and T = V \S such that s ∈ S and t ∈ T.
• The net flow f (S,T) across the cut (S,T) is

f (S,T) = ∑
u∈S

∑
v∈T

f (u,v)−∑
u∈S

∑
v∈T

f (v,u).

• The capacity c(S,T) of the cut (S,T) is

c(S,T) = ∑
u∈S

∑
v∈T

c(u,v).

• A minimum cut of a G is a cut whose capacity is minimal over all cuts of the network.

Lemma 3: Given flow network G with source s, target t, capacity fct. c and flow f .
Then, |f |= f (S,T) for any cut (S,T) of G.

[Proof - WHITEBOARD]

Cor. 2: |f | ≤ c(S,T) for any cut (S,T) of G.

Thm [Max-Flow Min-Cut Theorem] Given flow network G with source s, target t, capacity fct. c
and flow f . The following statements are quivalent:

1) f is a maximum flow in G.

2) The residual network Gf contains no augmenting paths.

3) |f |= c(S,T) for some cut (S,T) of G.
[Proof - WHITEBOARD]

7 / 8

FORDFULKERSON ALGORITHM(G, s, t, c)
1: for each edge (u,v) ∈ E do f (u,v)← 0
2: while there is a path P from s to t in the residual network Gf do
3: cf (P)←min{cf (u,v) |(u,v) is on P}
4: for each edge (u,v) in p do
5: if (u,v) ∈ E then
6: f (u,v)← f (u,v)+ cf (P)
7: else
8: f (v,u)← f (v,u)− cf (P)

9: return f as maximum flow

By the latter arguments, it is ensured, that if this alg. terminates, we get maximum flow.

However, if we have e.g. irrational capacities, this alg. may no converge.

If integer capacities are used (or real number that are rescaled to integers), the algorithm terminates
as in each step, f ← f ↑ fP is increased by at least one.

Runtime (assuming that f ∗ is returned max flow):
• Line 1: O(|E|) (via BFS in O(|V|+ |E|) time and since G ”connected” and so |E| ≥ |V|−1”)
• Line 2: is called at most |f ∗| times and finding st-path can be done in O(|E|) time.
• Line 3: When constructing P in Line 2, we can keep track of cf (P), i.e., constant time in Line 3

• Line 4: O(|E|) calls (with Line 5,6 constant time)

In total O(|f ∗||E|) time - which can cause problem if e.g. |f ∗|= 109.

If one chooses ”shortest st-paths” in Line 2 we obtain the EDMONDS-KARP algorithm which has
runtime O(|V||E|2) time [Detail Chp 26 in Course Book]

8 / 8

FORDFULKERSON ALGORITHM(G, s, t, c)
1: for each edge (u,v) ∈ E do f (u,v)← 0
2: while there is a path P from s to t in the residual network Gf do
3: cf (P)←min{cf (u,v) |(u,v) is on P}
4: for each edge (u,v) in p do
5: if (u,v) ∈ E then
6: f (u,v)← f (u,v)+ cf (P)
7: else
8: f (v,u)← f (v,u)− cf (P)

9: return f as maximum flow

By the latter arguments, it is ensured, that if this alg. terminates, we get maximum flow.

However, if we have e.g. irrational capacities, this alg. may no converge.

If integer capacities are used (or real number that are rescaled to integers), the algorithm terminates
as in each step, f ← f ↑ fP is increased by at least one.

Runtime (assuming that f ∗ is returned max flow):
• Line 1: O(|E|) (via BFS in O(|V|+ |E|) time and since G ”connected” and so |E| ≥ |V|−1”)
• Line 2: is called at most |f ∗| times and finding st-path can be done in O(|E|) time.
• Line 3: When constructing P in Line 2, we can keep track of cf (P), i.e., constant time in Line 3

• Line 4: O(|E|) calls (with Line 5,6 constant time)

In total O(|f ∗||E|) time - which can cause problem if e.g. |f ∗|= 109.

If one chooses ”shortest st-paths” in Line 2 we obtain the EDMONDS-KARP algorithm which has
runtime O(|V||E|2) time [Detail Chp 26 in Course Book]

8 / 8

FORDFULKERSON ALGORITHM(G, s, t, c)
1: for each edge (u,v) ∈ E do f (u,v)← 0
2: while there is a path P from s to t in the residual network Gf do
3: cf (P)←min{cf (u,v) |(u,v) is on P}
4: for each edge (u,v) in p do
5: if (u,v) ∈ E then
6: f (u,v)← f (u,v)+ cf (P)
7: else
8: f (v,u)← f (v,u)− cf (P)

9: return f as maximum flow

By the latter arguments, it is ensured, that if this alg. terminates, we get maximum flow.

However, if we have e.g. irrational capacities, this alg. may no converge.

If integer capacities are used (or real number that are rescaled to integers), the algorithm terminates
as in each step, f ← f ↑ fP is increased by at least one.

Runtime (assuming that f ∗ is returned max flow):
• Line 1: O(|E|) (via BFS in O(|V|+ |E|) time and since G ”connected” and so |E| ≥ |V|−1”)
• Line 2: is called at most |f ∗| times and finding st-path can be done in O(|E|) time.
• Line 3: When constructing P in Line 2, we can keep track of cf (P), i.e., constant time in Line 3

• Line 4: O(|E|) calls (with Line 5,6 constant time)

In total O(|f ∗||E|) time - which can cause problem if e.g. |f ∗|= 109.

If one chooses ”shortest st-paths” in Line 2 we obtain the EDMONDS-KARP algorithm which has
runtime O(|V||E|2) time [Detail Chp 26 in Course Book]

8 / 8

FORDFULKERSON ALGORITHM(G, s, t, c)
1: for each edge (u,v) ∈ E do f (u,v)← 0
2: while there is a path P from s to t in the residual network Gf do
3: cf (P)←min{cf (u,v) |(u,v) is on P}
4: for each edge (u,v) in p do
5: if (u,v) ∈ E then
6: f (u,v)← f (u,v)+ cf (P)
7: else
8: f (v,u)← f (v,u)− cf (P)

9: return f as maximum flow

By the latter arguments, it is ensured, that if this alg. terminates, we get maximum flow.

However, if we have e.g. irrational capacities, this alg. may no converge.

If integer capacities are used (or real number that are rescaled to integers), the algorithm terminates
as in each step, f ← f ↑ fP is increased by at least one.

Runtime (assuming that f ∗ is returned max flow):
• Line 1: O(|E|) (via BFS in O(|V|+ |E|) time and since G ”connected” and so |E| ≥ |V|−1”)
• Line 2: is called at most |f ∗| times and finding st-path can be done in O(|E|) time.
• Line 3: When constructing P in Line 2, we can keep track of cf (P), i.e., constant time in Line 3

• Line 4: O(|E|) calls (with Line 5,6 constant time)

In total O(|f ∗||E|) time - which can cause problem if e.g. |f ∗|= 109.

If one chooses ”shortest st-paths” in Line 2 we obtain the EDMONDS-KARP algorithm which has
runtime O(|V||E|2) time [Detail Chp 26 in Course Book]

8 / 8

FORDFULKERSON ALGORITHM(G, s, t, c)
1: for each edge (u,v) ∈ E do f (u,v)← 0
2: while there is a path P from s to t in the residual network Gf do
3: cf (P)←min{cf (u,v) |(u,v) is on P}
4: for each edge (u,v) in p do
5: if (u,v) ∈ E then
6: f (u,v)← f (u,v)+ cf (P)
7: else
8: f (v,u)← f (v,u)− cf (P)

9: return f as maximum flow

By the latter arguments, it is ensured, that if this alg. terminates, we get maximum flow.

However, if we have e.g. irrational capacities, this alg. may no converge.

If integer capacities are used (or real number that are rescaled to integers), the algorithm terminates
as in each step, f ← f ↑ fP is increased by at least one.

Runtime (assuming that f ∗ is returned max flow):
• Line 1: O(|E|) (via BFS in O(|V|+ |E|) time and since G ”connected” and so |E| ≥ |V|−1”)
• Line 2: is called at most |f ∗ | times and finding st-path can be done in O(|E|) time.
• Line 3: When constructing P in Line 2, we can keep track of cf (P), i.e., constant time in Line 3

• Line 4: O(|E|) calls (with Line 5,6 constant time)

In total O(|f ∗||E|) time - which can cause problem if e.g. |f ∗|= 109.

If one chooses ”shortest st-paths” in Line 2 we obtain the EDMONDS-KARP algorithm which has
runtime O(|V||E|2) time [Detail Chp 26 in Course Book]

8 / 8

FORDFULKERSON ALGORITHM(G, s, t, c)
1: for each edge (u,v) ∈ E do f (u,v)← 0
2: while there is a path P from s to t in the residual network Gf do
3: cf (P)←min{cf (u,v) |(u,v) is on P}
4: for each edge (u,v) in p do
5: if (u,v) ∈ E then
6: f (u,v)← f (u,v)+ cf (P)
7: else
8: f (v,u)← f (v,u)− cf (P)

9: return f as maximum flow

By the latter arguments, it is ensured, that if this alg. terminates, we get maximum flow.

However, if we have e.g. irrational capacities, this alg. may no converge.

If integer capacities are used (or real number that are rescaled to integers), the algorithm terminates
as in each step, f ← f ↑ fP is increased by at least one.

Runtime (assuming that f ∗ is returned max flow):
• Line 1: O(|E|) (via BFS in O(|V|+ |E|) time and since G ”connected” and so |E| ≥ |V|−1”)
• Line 2: is called at most |f ∗ | times and finding st-path can be done in O(|E|) time.
• Line 3: When constructing P in Line 2, we can keep track of cf (P), i.e., constant time in Line 3

• Line 4: O(|E|) calls (with Line 5,6 constant time)

In total O(|f ∗||E|) time - which can cause problem if e.g. |f ∗|= 109.

If one chooses ”shortest st-paths” in Line 2 we obtain the EDMONDS-KARP algorithm which has
runtime O(|V||E|2) time [Detail Chp 26 in Course Book]

8 / 8

