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Quiz!

At least one answer is correct for each question.

Question 1

What is true for every problem in P?

(a) they can be solved by a deterministic algorithm in polynomial time

(b) they are decision problems

(c) they are optimization problems

(d) they can be solved by a non-deterministic algorithm in polynomial time

(e) they are verifiable in polynomial time
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Quiz!

Question 2

What is true for every problem in NP?

(a) they can be solved by a deterministic algorithm in polynomial time

(b) they are decision problems

(c) they are optimization problems

(d) they can be solved by a non-deterministic algorithm in polynomial time

(e) they are verifiable in polynomial time
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Quiz!

Question 3

What is P respectively NP short for?

(a) Problematic respectively Non-Problematic

(b) Polynomial respectively Non-deterministic Polynomial

(c) Polynomial respectively Non-Polynomial

(d) Easy-Peasy respectively Not Easy-Peasy
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Quiz!

Question 4

How do we prove that a decision problem lies in the class NP?

(a) Provide a deterministic algorithm that solves the problem in polynomial time

(b) Provide a deterministic algorithm that verifies if a certificate1 is correct

(c) Reduce the problem (in polynomial time) to another decision problem we already
know lies in NP

(d) Reduce (in polynomial time) a decision problem we already know lies in NP to the
problem in question

(e) Provide a non-deterministic algorithm that solves the problem in polynomial time

1i.e. YES-instance
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Quiz!

Question 5

What are we absolutely certain of?

(a) Every problem in P lies in NP

(b) There is a problem in NP that is not in P

(c) Every problem in NP lies in P

(d) Every NP-hard problem is NP-complete

(e) Every NP-complete problem is NP-hard

(f) Every problem in NP is NP-complete
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Quiz!

Question 6

What is true for every NP-hard problem?

(a) They lie in NP and are NP-complete

(b) They are optimization problem

(c) They are decision problems

(d) They are at least as difficult to solve as any other NP-hard problem

(e) They can be solved by a non-deterministic algorithm in polynomial time
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Answers
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Answers

Question 2

What is true for every problem in NP?

(a) ??? they can be solved by a deterministic algorithm in polynomial time ??? (we don’t

know!)

(b) they are decision problems

(c) they are optimization problems

(d) they can be solved by a non-deterministic algorithm in polynomial time

(e) they are verifiable in polynomial time
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Answers

Question 3

What is P respectively NP short for?

(a) Problematic respectively Non-Problematic

(b) Polynomial respectively Non-deterministic Polynomial

(c) Polynomial respectively Non-Polynomial

(d) Easy-Peasy respectively Not Easy-Peasy
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Answers

Question 4

How can we prove that a decision problem lies in the class NP?

(a) Provide a deterministic algorithm that solves the problem in polynomial
time

(b) Provide a deterministic algorithm that verifies if a certificate is correct

(c) Reduce the problem to another decision problem we already know lies in NP

(d) Reduce a decision problem we already know lies in NP to the problem in question

(e) Provide a non-deterministic algorithm that solves the problem in
polynomial time
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Answers

Question 5

What are we absolutely certain of?

(a) Every problem in P lies in NP

(b) There is a problem in NP that is not in P

(c) Every problem in NP lies in P

(d) Every NP-hard problem is NP-complete

(e) Every NP-complete problem is NP-hard
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Answers

Question 6

What is true for every NP-hard problem?

(a) They lie in NP and are NP-complete

(b) They are optimization problem

(c) They are decision problems

(d) They are at least as difficult to solve as any other NP-hard problem

(e) They can be solved by a non-deterministic algorithm in polynomial time

TA: Anna Lindeberg Tutorial 2



Short arguments for why:
Problems Why correct? Problems Why incorrect?

1(a), 1(b), 2(b),
2(d), 2(e)

Definition of P
resp. NP

1(c), 2(c) Definition of P
resp. NP

1(d), 1(e) P ⊆ NP 3(a),3(d) Nonsense

3(b) Just correct 3(c) Just incorrect
(common mis-
take)

4(a), 5(a) P ⊆ NP 4(c), 4(d) You would need
a reduction in
both directions.
Just one is not
enough!
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Short arguments for why:
Problems Why correct? Problems Why incorrect?

4(b), 4(e) Definition of P
resp. NP

5(b), 5(c), 5(f) We don’t know
wether P = NP
or P ⊊ NP

5(e) Definition of NP-
complete

5(d), 6(a) E.g. optimization
problems may
be NP-hard, but
definitely not in
NP

6(d) Reductions 6(b), 6(c) NP-hard can be
either optimiza-
tion or decision
problems

6(e) Counterex: halt-
ing problem
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Highlights

P and NP contains decision problems

P ⊆ NP is known, but P = NP or P ⊊ NP is open

NP-complete ⊊ NP-hard, e.g. optimization problems can be NP-hard

Show in P by providing polynomial-time algorithm that solves the problem

Show in NP by providing polynomial-time algorithm that verifies the problem

A is a NP-hard problem if we can reduce a known NP-hard problem B TO A

A is a NP-complete problem if it is in NP and it is NP-hard
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Minimum spanning tree

Consider the following problem
Input: A graph G = (V ,E ) with edge-weights σ : E → N
Output: The weight of a minimum spanning tree

Is it a decision problem? No – what is one way to rephrase it as a decision problem?

Input: A graph G = (V ,E ) with edge-weights σ : E → N, and k ∈ N
Output: True if there is a minimum spanning tree of weight ≤ k , otherwise False
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