MATEMATISKA INSTITUTIONEN Tentamensskrivning i
STOCKHOLMS UNIVERSITET Matematik IIT Komplex Analys

Avd. Matematik 7.5 hp
Examinator: Rikard Bégvad 2023/10/23

No calculators, books, or notes allowed.
Each problem is worth 5 points; total 30, grade E attained at 15.
There are six problems in total, printed on both sides of the page.

1. Use the residue theorem to evaluate, as a function of A € R,
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3. Determine the Laurent series of

in the annulus r < |z — 1| < R. Your answer should consider finitely
many cases depending on the radii R and/or r.

2. Evaluate
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(a) Determine the image of the unit disk {z € C ; |z| < 1} under

N 1+2z

2
11—z
(b) Consider
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What is the image of the unit disk? Is f a conformal mapping

from the disk to its image?
[Hint: compose the mapping from (a) with another transfor-

mation. |

5. Consider the function
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(a) Show that, on the circle where |z| = 9*,
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(b) How many zeros does T have in the disk |z| < 9%7
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6. Suppose f is holomorphic inside and on the circle where |z| = 1.
Assume f(0) # 0 and f(t) # 0 for all ¢ on the circle |t| = 1.

(a) Why does f have only a finite number of zeros inside the disk
|z| < 17

(b) Show that, if ai, ..., a, are the zeros of f inside the disk counted
with multiplicity, then the function
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(extended by continuity to z = ay,...,a,) is a harmonic func-

tion.
(¢) Deduce that
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