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1. Use the residue theorem to evaluate, as a function of λ ∈ R,∫ ∞
−∞

2 exp(−2πiλx)

exp(πx) + exp(−πx)
dx

Solution. The final answer is

2

exp(πλ) + exp(−πλ)

which can be obtained in a few ways: by a rectangular contour that
goes around one pole; by a contour that goes around infinitely many
poles; or by a semicircular contour after a change of variable. See
Figure 1.

Going around one pole. The denominator vanishes when

exp(πx) + exp(−πx) = 0 ⇐⇒ exp(2πx) = −1 ⇐⇒ x ∈ i

2
+ iZ

We shift the contour from
∫∞
−∞ to take advantage of the pole at i/2 (or

−i/2). Let C be the rectangular curve from −R to R along the real
axis, then R to R+ i vertically, followed by R+ i to R− i horizontally,
and finally −R + i to −R. The pole i/2 lies inside, and there are no
others, so ∫

C

2 exp(−2πiλz)

exp(πz) + exp(−πz)
dz = 2πiRes(. . . , z = i/2)

The horizontal parts of C contribute

(1 + e2πλ)

∫ R

−R

2 exp(−2πiλx)

exp(πx) + exp(−πx)
dx

where the factor e2πλ comes from shifting by i as follows. Since exp(πi) =
exp(−πi) = −1,

2 exp(−2πiλ(x+ i))

exp(π(x+ i)) + exp(−π(x+ i))
=
e2πλ

−1
· 2 exp(−2πiλx)

exp(πx) + exp(−πx)

This minus sign compensates for the reversed orientation (−R to R on
the bottom, but R + i to −R + i on the top, of the rectangle).
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The vertical parts of C disappear as R → ∞. Each side has length
1, whereas the integrand tends to 0. The numerator is bounded on the
segments z = ±R + iy, 0 ≤ y ≤ 1, since

|2 exp(−2πi(±R + iy))| = 2 exp(2πy) ≤ 2 exp(2π)

The other terms are exponentially small:

2

exp(π(±R + iy)) + exp(−π(±R + iy))
.

1

exp(πR)
→ 0.

Taking R→∞, it follows that

2πiRes(. . . , z = i/2) =

∫
C

= (1 + e2πλ)

∫ ∞
−∞

The answer is of the form∫ ∞
−∞

2 exp(−2πiλx)

exp(πx) + exp(−πx)
dx =

2πiRes(. . . , z = i/2)

1 + e2πλ

We claim that

Res
( 2 exp(−2πiλz)

exp(πz) + exp(−πz)
, z = i/2

)
=

1

πi
eπλ

Indeed, recentering at i/2, we have

exp(πz)+exp(−πz) = exp(π(z−i/2)) exp(πi/2)+exp(−π(z−i/2)) exp(−πi/2)

Since exp(±πi/2) = ±i,

exp(πz) + exp(−πz) = i
(

exp(π(z − i/2))− exp(−π(z − i/2))
)

Substituting the power series for the exponential function,

exp(πz) + exp(−πz) = i2π(z − i/2) + . . .

It follows that
2

exp(πz) + exp(−πz)
=

1

πi
(z − i/2)−1 + . . .

so the residue is as claimed. The numerator 2 exp(−2πiλz) is holomor-
phic so we simply evaluate at z = i/2 and multiply by 1/(πi). �

Alternative solution: going around many poles
Suppose we take a rectangle up to R+ iH instead of R+ i, with the

same integrand as before:

f(z) =
2 exp(−2πiλz)

exp(πz) + exp(−πz)
.

The vertical sides can be estimated as before, but now each has length
|H| instead of 1. Their contribution is negligible as long as |H| exp(−πR)→
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Figure 1. Three approaches to Task 1.
Left: rectangular contour around i/2. Left, gray:
rectangle going around multiple poles zn = i/2 + in.
Right: an indented semicircle enclosing a pole at i,
but avoiding the branch point at 0. These four arcs
correspond to the four sides of the original rectangle
under x 7→ exp(πx), which also maps the poles via i =
exp(πi/2).

0. We may choose H = ±R for example. The sign is important be-
cause of the remaining side. On the side opposite to the real axis, we
have

f(x+ iH) =
2 exp(−2πiλ(x+ iH))

exp(π(x+ iH)) + exp(−π(x+ iH))

= 2e2πλH
exp(−2πiλx)

exp(πx)eπiH + exp(−πx)e−πiH

which will be exponentially small as |H| → ∞, provided that λ and H
have opposite sign. We choose the sign of H to be positive if λ < 0, or
negative if λ > 0. This method does not help if λ = 0, but that can be
addressed separately. For instance, we may take a limit λ → 0 at the
end once we have the answer for λ < 0 (the integrand has exponential
decay, so one can justify taking the limit under the integral sign). The
integral for λ = 0 can also be done by finding an antiderivative. Let us
therefore restrict to λ 6= 0. There is no loss of generality in assuming
one sign or the other, since the integrand is even under λ 7→ ±λ.

One can arrive at the same result using a semicircular contour of
radius R instead of a rectangle (for instance, quoting Jordan’s lemma
to argue that the upper part of the semicircle is negligible). As in the
rectangular approach, the semicircle should lie in either the upper or
lower half-plane, depending on the sign of λ.
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To fix ideas, let us take a rectangle in the upper half-plane. The
same logic applies if the sign of λ forces us into the lower half-plane,
or if we preferred semicircles to begin with. In any case, we have a
growing contour that encloses more and more poles:

zn =
i

2
+ in

The residue theorem then implies, in the limit of very large R and H,∫ ∞
−∞

2 exp(−2πiλx)

exp(πx) + exp(−πx)
dx = 2πi

∑
n

Res
(
f(z), z =

i

2
+ in

)
where the sum is over n = 0, 1, 2, . . . if λ < 0 (as we assume), or over
n = −1,−2,−3, . . . if λ > 0 (if one made the opposite assumption).
After computing the residues, we will be left with a geometric series.

We claim

Res(f, zn) =
1

πi
exp(πλ) · (− exp(2πλ))n.

Assuming the claim, the sum is

2πi
∞∑
n=0

Res(f, zn) = 2πi · exp(πλ)

πi

∞∑
n=0

(− exp(2πλ))n

= 2 exp(πλ)
1

1 + exp(2πλ)

by summing a geometric series 1
1+q

=
∑

n(−q)n. After factoring out

exp(πλ), we get the final answer 2
exp(πλ)+exp(−πλ) as required.

Finally, let us check that the residues are as claimed. To compute
the residue at zn, we add and subtract zn to re-center things:

f(z) =
2 exp(−2πiλzn) exp(−2πiλ(z − zn))

exp(πzn) exp(π(z − zn)) + exp(−πzn) exp(−π(z − zn))

For z = i/2+in = i(1/2+n), knowing exp(πi/2) = i and exp(πi) = −1,
we have

exp(πzn) = exp(πi/2) exp(πin) = i(−1)n

exp(−πzn) = exp(−πi/2) exp(−πin) = −i(−1)n

exp(−2πiλzn) = exp(2πλ(1/2 + n)) = exp(πλ) exp(2πλn)

Therefore

f(z) =
2 exp(πλ) exp(2πλn)

i(−1)n
· exp(−2πiλ(z − zn))

exp(π(z − zn))− exp(−π(z − zn))
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where we can now substitute the power series exp(q) = 1 + q + . . .:

f(z) =
2 exp(πλ) exp(2πλn)

i(−1)n
· 1 + . . .

2π(z − zn) + . . .

Extracting the coefficient of (z − zn)−1, we see that

Res(f, zn) =
exp(πλ) exp(2πλn)

iπ(−1)n
=

exp(πλ)

πi
(− exp(2πλ))n

as claimed. �
Alternative solution: change of variable
Another approach that many found tempting was to remove the

exponentials by a change of variable:

z = exp(πx), dz = π exp(πx)dx = πz dx =⇒∫ ∞
−∞

2

eπx + e−πx
e−2πiλxdx =

2

π

∫ ∞
0

1

z2 + 1
z−2iλdz

(or very similarly with z = e−πx instead of eπx). The good news is that
one can more easily find the poles z = ±i. The bad news is that, for
non-zero real λ, the power z−2iλ is not holomorphic at z = 0, but has
a branch point.

The integrand is holomorphic inside and on an indented semicircle
(as before, either in the upper or lower half-plane). Only one of the
poles contributes, for instance z = i if the contour lies in the upper
half-plane. The residue can be computed by expanding in powers of
z − i, say

2

z2 + 1
z−2iλ =

2

(z − i)(2i+ z − i)
(i−2iλ + . . .) =

2i−2iλ

2i
(z − i)−1 + . . .

Therefore, after we substitute i = exp(πi/2), the residue is

2i−2iλ

2i
=

1

i
exp

(πi
2

(−2iλ)
)

=
1

i
exp(πλ).

By the residue theorem, in the limit of a big semicircle with a small
indent, ∫ ∞

0

2

z2 + 1
(z−2iλ + (−z)−2iλ)dz = 2πiRes(. . . , z = i)

We have, from exp(πi) = −1,

(−z)−2iλ = exp(πi(−2iλ))z−2iλ = exp(2πλ)z−2iλ

Therefore

(1+exp(2πλ))

∫ ∞
0

2

z2 + 1
z−2iλdz = 2πiRes(. . . , z = i) = 2πi·1

i
exp(πλ)
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Finally, the original integral can be evaluated:∫ ∞
−∞

2

eπx + e−πx
e−2πiλxdx =

1

π

∫ ∞
0

2

z2 + 1
z−2iλdz =

1

π
· exp(πλ)

1 + exp(2πλ)

2πi

i

�

Rubric 1. The 5 points correspond more or less closely with success at
the following five sub-tasks (roughly 1 point each):

• Find the poles
• Choose a contour
• Compute the residue(s)
• Bound the integrals along the remaining sides
• State the residue theorem carefully

�

2. Evaluate ∫
|z|=1

∫
|w|=1

cos(2πwz)

1− 2zw
dwdz

Solution. Let us integrate over w. There is a pole at w = 1
2z

where

1− 2zw = 0. The pole lies inside the circle because | 1
2z
| = 1

2
for any z

on the circle |z| = 1. Cauchy’s integral formula, namely

f(w0) =
1

2πi

∫
f(w)

w − w0

dw

applied to the function w 7→ cos(2πwz) and the point w0 = 1/(2z),
gives∫

cos(2πwz)

1− 2zw
dw =

−1

2z

∫
cos(2πwz)

w − 1/(2z)
dw = − 1

2z
· 2πi cos(2πz · 1/(2z))

The same conclusion can also be drawn by calculating the residue at
w = 1/(2z). By either method,∫

|w|=1

cos(2πwz)

1− 2zw
dw = −2πi

2z
cos(π) =

πi

z

since cos(π) = −1. The integral over z is then∫
|z|=1

∫
|w|=1

cos(2πwz)

1− 2zw
dwdz =

∫
|z|=1

πi

z
dz = πi(2πi) = −2π2.

�

Rubric 2. There are three main steps:

• Observation that | 1
2z
| < 1 so it contributes to the integral

• Cauchy’s integral formula for
∫
dw
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• Cauchy’s integral formula for
∫
dz

Partial credit out of 5 is possible along the lines of 1 + 2 + 2.
Full credit is awarded for success by other means, e.g. presenting

it as a residue calculation. Students could also say something about
several variables. �

3. Determine the Laurent series of

f(z) =
2

z2 − 1

in the annulus r < |z − 1| < R. Your answer should consider finitely
many cases depending on the radii R and/or r.

Solution. If R ≤ 2, then the Laurent series is

f(z) =
1

z − 1
+
∞∑
n=0

(−1)n+1

2n+1
(z − 1)n =

∞∑
n=−1

(−1)n+1

2n+1
(z − 1)n

If R > 2, then the Laurent series is

f(z) =
∞∑
n=1

(−1)n2n(z − 1)−n−1 =
−2∑

k=−∞

(−2)−k−1(z − 1)k

The denominator is a difference of squares:

z2 − 1 = (z − 1)(z + 1)

There are two singularities 1 and −1. The Laurent series depends on
whether the center z0 = 1 is closer to z or to −1. Since |1− (−1)| = 2,
we consider the cases |z − 1| < 2 and |z − 1| > 2 separately.

The function can be written as a partial fraction:

f(z) =
2

z2 − 1
=

1

z − 1
− 1

z + 1

The first term is already a power (z− 1)−1 around z0 = 1. The second
term can be expanded in a geometric series, using

1

1 + q
=
∞∑
n=0

(−1)nqn.

This converges for |q| < 1, which is why the two cases must be treated
differently. We choose q accordingly.

If |z − 1| < 2, then

1

z + 1
=

1

z − 1 + 2
=

1

2
· 1

1 + (z − 1)/2
=

1

2

∞∑
n=0

(−1)n2−n(z − 1)n
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where the geometric series converges because |(z−1)/2| < 1. Subtract-
ing this from the original term gives

f(z) =
1

z − 1
− 1

z + 1
=

1

z + 1
− 1

2

∞∑
n=0

(−1)n2−n(z − 1)n

This is the expansion as claimed, after a simplification

−1

2
(−1)n2−n = (−1)n+12−n−1.

In the other case, if |z − 1| > 2, then

1

z + 1
=

1

z − 1
· 1

1 + 2/(z − 1)
=

1

z − 1

∞∑
n=0

(−1)n2n(z − 1)−n

This time the series converges because |2/(z−1)| < 1. The term n = 0
cancels with the other factor from f :

f(z) =
1

z − 1
+

1

z + 1
=

1− 1

z − 1
+
∞∑
n=1

(−2)n(z − 1)−n−1

so the series involves negative powers from −2 downward, as claimed.
�

Rubric 3. Total 5=1+1+1+2 points roughly for the following

• Partial fraction
• Identifying the poles
• Geometric series
• Finding the different regions

Students could also have other approaches worth full credit, e.g. writ-
ing an integral formula for the coefficients in the Laurent series, and
determining whether the contour goes around other poles.

It’s also correct to skip the partial fraction, writing instead

2

z2 − 1
= (z − 1)−1

2

z + 1

The factor 1/(z+1) is a geometric series as above, and the other factor
(z − 1)−1 just shifts the series by (z − 1)k 7→ (z − 1)k−1. �

4.

(a) Determine the image of the unit disk {z ∈ C ; |z| < 1} under

z 7→ 1 + z

1− z
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(b) Consider

f(z) =
z

(1− z)2

What is the image of the unit disk? Is f a conformal mapping
from the disk to its image?

[Hint: compose the mapping from (a) with another transfor-
mation.]

Solution.

(a) The image is the right half-plane, where Re(w) > 0. We use
the fact that Möbius transformations take circles to circles. It
is therefore enough to check four points:

0 7→ 1, 1 7→ ∞, −1 7→ 0, i 7→ 1 + i

1− i
= i

The points 1,−1, i lie on the unit circle, while their images
∞, 0, i lie on the imaginary axis. Therefore the unit disk is
either mapped to the left half-plane or the right half-plane, and
it must be the right half-plane because 0 7→ 1.

(b) Square the map from (a). We have(
1 + z

1− z

)2

− 1 =
(1 + z)2 − (1− z)2

(1− z)2
=

4z

(1− z)2

Under squaring, the right-half plane is mapped to C\] −∞, 0]
because

(reiθ)2 = r2e2iθ

In the right-half plane, −π/2 < θ < π/2, so 2θ attains all
values from −π to π. Therefore r2e2iθ misses only the negative
real axis.

If we rescale by a positive factor, C\] − ∞, 0] is preserved.
The sequence of mappings

z 7→ 1 + z

1− z
7→
(

1 + z

1− z

)2

7→ 1

4

(
1 + z

1− z

)2

− 1

4

takes the unit disk to the half-plane, then C\] − ∞, 0] then
C\]−∞,−1/4]. The image is the slit region where ]−∞,−1/4]
is removed.

Yes, f is a conformal mapping because it is a composition
of conformal mappings. Given w, the equation f(z) = w is a
quadratic for z, but only one of the roots lies inside the unit
disk.
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0

1

Re 1+z
1−z > 0

∞

0∞

C \ (−∞,−1
4
]

Figure 2. (Task 4.) The unit disk is mapped to the
right half-plane, then to a slit plane.

It is important that we work with the open unit disk |z| < 1.
Thus f is a conformal mapping even though it may be two-to-
one on the boundary circle. Indeed, i and −i have the same
image.

�

Rubric 4. Total 5 points, as follows

• (a) Möbius transformations take circles to circles
• (a) Checking images of 3 points on the unit circle to determine

the image of the boundary
• (a) Determining image of interior by checking one more point

inside (or by considering orientation)
• (b) Calculation relating z/(1 − z)2 to the mapping from (a),

or possibly an alternative approach identifying the image. The
image is a slit region C\]−∞,−1/4].
• (b) Yes, the mapping is one-to-one on the unit disk (even though

it is not one-to-one on the closed disk)

�

5. Consider the function

T (z) =
∞∑
n=0

3−n
2

zn

(a) Show that, on the circle where |z| = 9k,∣∣∣∣∑
n6=k

3−n
2

zn
∣∣∣∣ < |3−k2zk|

(b) How many zeros does T have in the disk where |z| < 9k?
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Solution. First let us solve (b) using (a). The function T has precisely
k zeros in the disk where |z| < 9k, and we can prove it using Rouché’s

theorem. Clearly 3−k
2
zk is a holomorphic function with k zeros in

the disk where |z| < 9k (namely z = 0 is a zero with multiplicity
k). The series T and the sum

∑
n6=k are also holomorphic, because

the coefficients 3−n
2

decay rapidly enough to make the power series
converge. Assuming the inequality from part (a), Rouché’s theorem

implies that T has the same number of zeros as 3−k
2
zk. The result

follows.
To prove (a), we first observe that

|3−k2zk| = 3−k
2|z|k = 3−k

2

32k2 = 3k
2

for any z on the circle where |z| = 9k = 32k. Similarly for n 6= k,

|3−n2

zn| = 3−n
2+2kn

To compare n = k with the other terms n 6= k in the sum T (z), we use
the triangle inequality:∣∣∣∣∑

n6=k

3−n
2

zn
∣∣∣∣ ≤∑

n6=k

3−n
2+2kn

To compare with the term for k, we add/subtract k2 and write the
exponent as

−n2 + 2kn = k2 − (k − n)2

Therefore ∣∣∣∣∑
n6=k

3−n
2

zn
∣∣∣∣ ≤∑

n 6=k

3−n
2+2kn = 3k

2
∑
n 6=k

3−(k−n)
2

and the result follows if we can show that this last sum is less than
1. Indeed it is! Changing variables to m = k − n (for 0 ≤ n < k) or
m = n− k (for n > k), we have

∑
n6=k

3−(k−n)
2

=
k∑

m=1

3−m
2

+
∞∑
m=1

3−m
2

< 2
∞∑
m=1

3−m
2

Since m2 ≥ m (with strict inequality for m > 1), we can compare this
to a geometric series:

∞∑
m=1

3−m
2

<
∞∑
m=1

3−m =
1/3

1− 1/3
=

1

2
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Finally,∣∣∣∣∑
n6=k

3−n
2

zn
∣∣∣∣ ≤∑

n6=k

3−n
2+2kn = 3k

2
∑
n6=k

3−(k−n)
2

< 3k
2 · 2

∞∑
m=1

3−m
2

< 3k
2

which proves (a). �

Rubric 5. Total 5 points, where the points for (b) can be earned without
any attempt at (a).

• (b) statement of Rouché
• (b) application of Rouché (what functions, etc)
• (b) correct conclusion: k zeros in the disk |z| < 9k

• (a) determine |3−n2
zn| on the circle

• (a) set-up to compare n 6= k with k, calculation with geometric
series

�

6. Suppose f is holomorphic inside and on the circle where |z| = 1.
Assume f(0) 6= 0 and f(t) 6= 0 for all t on the circle |t| = 1.

(a) Why does f have only a finite number of zeros inside the disk
|z| < 1?

(b) Show that, if a1, . . . , an are the zeros of f inside the disk counted
with multiplicity, then the function

log

∣∣∣∣ f(z)∏n
k=1(z − ak)

∣∣∣∣
(extended by continuity to z = a1, . . . , an) is a harmonic func-
tion.

(c) Deduce that

log |f(0)| =
n∑
k=1

log |ak|+
1

2π

∫ 2π

0

log |f(eiθ)|dθ

Solution.

(a) There are only finitely many zeros in a bounded region because,
by the identity theorem, zeros of an analytic function cannot
accumulate. We assume f(0) 6= 0, so it cannot be that f is
identically 0.

(b) Inside the logarithm, f(z)÷
∏

k(z−ak) is holomorphic and non-
zero because a1, . . . , an are all the zeros of f . Therefore there
is a holomorphic logarithm, whose real part is the function in
question. The real part of a holomorphic function is harmonic.
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(c) We apply the mean value property to the harmonic function
from part (b). Its value at 0 must be the average over the unit
circle:

log

∣∣∣∣ f(0)∏
k(0− ak)

∣∣∣∣ =
1

2π

∫ 2π

0

log

∣∣∣∣ f(eit)∏
k(e

it − ak)

∣∣∣∣dt
Rearranging the logs using log(p/q) = log(p) − log(q) (for real
p, q) gives

log |f(0)|−
∑
k

log |ak| =
1

2π

∫ 2π

0

log |f(eit)|dt− 1

2π

n∑
k=1

∫ 2π

0

log |eit−ak|dt

This is the desired formula, with one extra sum at the end. We
claim that ∫ 2π

0

log |eit − ak|dt = 0

for each k.
To prove the claim, since |eit| = 1, we can write

log |eit − ak| = log |1− ake−it|

We may take conjugates since |w| = |w| for any w, so

log |eit − ak| = log |1− akeit| = Re(log(1− akz)),

on the unit circle where z = eit. The function log |1 − akz| is
harmonic in the unit disk |z| < 1, because it is the real part of
a holomorphic function log(1 − akz) in that domain. We have
1−akz 6= 0 in the disk because |ak| < 1, so that z = 1/ak would
make |z| > 1. Therefore, by the mean value property, the value
of this harmonic function at z = 0 is equal to its average around
the circle:

0 = log(1) = log |1− ak · 0| =
1

2π

∫ 2π

0

log |1− akeit|dt

This proves the claim. �
Other solutions
Alternatively, one could show the integral is 0 by applying

Cauchy’s formula (or Cauchy’s theorem) for holomorphic func-
tions instead of the mean value property for harmonic functions.
Either way, the point is that |ak| < 1 so that one can define a
holomorphic logarithm log(1 − akz). We could also integrate
term by term in the power series

log(1− u) = −u− u2/2− . . .
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That gives∫ 2π

0

log(1− ake−it)dt = −
∞∑
m=1

1

m
amk

∫ 2π

0

e−itmdt = 0

where the exponentials for m 6= 0 all integrate to 0 by period-
icity. Taking the real part shows once again that

∫
log |eit −

ak|dt = 0 as claimed.

�

Rubric 6. Total 5 points, roughly 1+2+2 for (a)+(b)+(c)

• (a) zeros cannot accumulate
• (b) the real part of an analytic function is harmonic
• (b) dividing f by the product yields a holomorphic function
• (c) mean value property

• (c)
∫ 2π

0
log |eit − ak|dt = 0

�


