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• No calculators, books, or notes allowed.
• There are six problems in total, printed on both sides of the

page.
• Each problem is worth 5 points; total 30, grade E attained at

15. Show your approach in detail, and state relevant theorems.
Partial credit is possible.
• For a question with multiple parts, you can earn credit for part

(b) without solving (a). You may use results from the earlier
parts to solve the next.

1. [5 points] For λ ∈ R, let

f(λ) =

∫ ∞
−∞

exp(−πx2 + 2πiλx)dx.

Show that

f(λ) = f(0) · exp(−πλ2).

Solution. We integrate the function

g(z) = exp(−πz2)

over a rectangular contour with one side from −R to R, where R→∞.
We choose a rectangle of height λ (or −λ), either above or below the
real axis. We may assume λ 6= 0, since if λ = 0, what we are asked to
show is simply f(0) = f(0).

Given λ 6= 0, let C be the contour made of four straight segments
oriented from −R to R, then R to R− iλ to −R− iλ to −R. This lies
above or below the real axis depending on the sign of λ.

Since g is holomorphic in the whole plane z ∈ C, it is holomorphic
inside and on the contour for all values of R. By Cauchy’s theorem,∫

C

g(z)dz = 0.

We parametrize the base by −R ≤ x ≤ R. The opposite side can be
parametrized by z = x − iλ with the same range −R ≤ x ≤ R. We
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Figure 1. Contour for task 1 (drawn in the case λ > 0).

have

g(x− iλ) = exp(−π(x− iλ)2) = exp(−πx2 + 2πixλ) exp(πλ2)

There is also a sign change from the orientation of the contour. These
two horizontal sides contribute∫ R

−R
exp(−πx2)dx−

∫ R

−R
exp(−πx2 + 2πiλx) exp(πλ2)dx

→ f(0)− f(λ) exp(πλ2) (R→∞)

The vertical sides are negligible as R→∞. We can parametrize them
by z = R + iy and z = −R + iy. The range is either 0 ≤ y ≤ |λ| or
|λ| ≤ y ≤ 0, depending on the sign of λ. In any case, these segments
each have length |λ|. To bound g, observe that

g(±R + iy) = exp(−(±R + iy)2) = exp(−R2 + y2) exp(∓2πiRy)

so
|g(±R + iy)| ≤ exp(−R2 + λ2).

It follows that∣∣∣ ∫
vertical sides

g
∣∣∣ ≤ 2|λ| exp(−R2 + λ2)→ 0

as R → ∞, for any given value of λ fixed in advance. The factor 2
arises because there are two vertical sides estimated the same way.

Going back to Cauchy’s theorem, as R→∞, the integral becomes

0 =

∫
horizontal

+

∫
vertical

→ f(0)− f(λ) exp(πλ2) + 0.

Since exp(πλ2) 6= 0, we may divide and obtain

f(λ) = f(0) · exp(−πλ2).
�

Remark: if it helps, there is no loss of generality in assuming λ > 0.
One can change variables x 7→ −x in the integral to show that

f(−λ) = f(λ)

so it is enough to consider only one of the possible signs of λ.
�
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2. [5 points] Evaluate∫
|z|=1

∫
|w|=1

sin(πwz)

1− 2zw
dwdz

where |z| = 1 and |w| = 1 refer to the unit circle in each variable, with
the usual orientation (anticlockwise).

Solution. The final answer is∫
|z|=1

∫
|w|=1

sin(πwz)

1− 2zw
dwdz = 2π2.

By Cauchy’s integral formula, applied to sin(πwz) as a function of
w, we have∫

sin(πwz)

1− 2wz
dw =

−1

2z

∫
sin(πwz)

w − 1/(2z)
dw =

−1

2z
· 2πi sin(πz · 1

2z
)

Alternatively, the same conclusion can be drawn from the residue the-
orem. Either way∫

sin(πwz)

1− 2wz
dw =

−1

2z
2πi sin(π/2) =

−πi
z
.

The integral over z is then∫
−πi
z
dz = −πi · 2πi = 2π2.

The final step
∫
z−1dz = 2πi can be justified by Cauchy’s integral

formula again, or by the residue theorem, or by direct evaluation. �

3. [5 points] Determine all the Laurent series of

f(z) =
2

z2 + 1

with center z0 = i.

Solution. There are two Laurent series, one of them convergent for
|z − i| < 2 and the other convergent for |z − i| > 2. For |z − i| < 2, we
have

f(z) =
∞∑

m=−1

1

2

( i
2

)m
(z − i)m

and for |z − i| > 2,

f(z) =
−2∑

m=−∞

−1

2

( i
2

)m
(z − i)m.
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These series can be obtained either by partial fractions, or by factoring.
In either approach, one writes

1

z + i
=

1

2i+ z − i
and expands in a geometric series

1

1 + q
= 1− q + q2 + . . . =

∞∑
n=0

(−1)nqn.

The geometric series converges for |q| < 1. If |z − i| < 2, then we take
q = z−i

2i
and expand as follows:

1

2i+ z − i
=

1

2i
· 1

1 + z−i
2i

=
1

2i

∞∑
n=0

(−1)n
(z − i

2i

)n
.

If |z − i| > 2, then we take q = 2i
z−i instead:

1

2i+ z − i
=

1

z − i
· 1

1 + 2i
z−i

=
1

z − i

∞∑
n=0

(−1)n
( 2i

z − i

)n
So far, we have a series expansion of 1

z+i
. Some algebra is needed to

turn it into a series for f . A direct approach is to write

f(z) =
2

z2 + 1
=

2

(z − i)(z + i)

Then we can simply multiply the series for 1
z+i

by 2
z−i . If |z − i| < 2,

then the result is

f(z) =
2

z − i
· 1

2i
· 1

1 + z−i
2i

=
1

i
(z − i)−1

∞∑
n=0

1

2n

(−1

i

)n
(z − i)n

We can simplify this using
−1

i
= i

and shifting the sum to start from (z − i)−1. That is

f(z) =
1

i
(z − i)−1

∞∑
n=0

1

2n

(−1

i

)n
(z − i)n

=
∞∑
n=0

2−nin−1(z − i)n−1
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and we index the sum by m = n − 1 instead of n, with 2−n = 2−m−1.
That gives the series as claimed for this case:

f(z) =
∞∑

m=−1

2−m−1im(z − i)m =
∞∑

m=−1

1

2

( i
2

)m
(z − i)m.

In the other case, we instead have

f(z) =
2

z − i
· 1

z − i
· 1

1 + 2i
z−i

= 2(z − i)−2
∞∑
n=0

(−1)n
( 2i

z − i

)n
The series goes from (z− i)−2 downward, with infinitely many negative
powers, so we change from n to m = −n− 2. That gives

f(z) = 2
−2∑

m=−∞

(z − i)m(−2i)−m−2

We can simplify by writing

f(z) = 2(−2i)−2
−2∑

m=−∞

(z − i)m(−2i)−m

and then

2(−2i)−2 = −2−1, (−2i)−m =
(−1

2i

)m
=
( i

2

)m
.

As claimed,

f(z) = −1

2

−2∑
m=−∞

( i
2

)m
(z − i)m.

Partial fraction. Another approach is to write f as a partial frac-
tion:

f(z) =
1

i

( 1

z − i
− 1

z + i

)
We can then substitute the series for 1

z+i
. The other term 1

z−i only

adjusts the terms of order (z − i)−1 in the series.
If |z − i| < 2, then

f(z) =
1

i
(z − i)−1 − 1

i
· 1

2i
· 1

1 + z−i
2i

=
1

i
(z − i)−1 +

1

2

∞∑
m=0

(−1)m
(z − i

2i

)m
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This agrees with the other method. The summands for m ≥ 0 are the
same, and the summand m = −1 above appears in this approach from
the other term 1

z−i in the partial fraction.
The other case |z − i| > 2 involves some cancellation to make the

series start from (z − i)−2, despite the term (z − i)−1 in the partial
fraction. We have

f(z) =
1

i
(z − i)−1 − 1

i
· 1

z − i
· 1

1 + 2i
z−i

=
1

i
(z − i)−1 − 1

i
(z − i)−1

∞∑
n=0

(−1)n
( 2i

z − i

)n
where the terms in (z − i)−1 cancel. Using again −1

i
= i leaves

f(z) = i(z − i)−1
∞∑
n=1

(−2i)n(z − i)−n.

We can let m = −n− 1 and write the final answer as

f(z) =
−2∑

m=−∞

−1

2

( i
2

)m
(z − i)m.

�

4. [5 points: 3 points for (a), 2 points for (b)]

(a) Determine the image of the unit disk {z ∈ C ; |z| < 1} under

z 7→ z + i

iz + 1

(b) Let D be the domain

{z ∈ C ; |z| < 1}\]− 1, 0]

that is, the unit disk with a segment of the real axis removed.
Find a conformal mapping from D onto the upper half-plane
{w ∈ C ; Im(w) > 0}.

[Hint: compose the mapping from (a) with other transforma-
tions such as w 7→ w2,

√
w, etc.]

Solution.
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0 =⇒

∞ ∞

i

Figure 2. Task 4(a): the transformation takes the unit
disk to the upper half-plane.

(a) Möbius transformations take circles to circles. First we com-
pute the images of three points on the unit circle – the unique
circle through those points must be the boundary of the im-
age domain. The image might lie either “inside” or “outside”
this boundary, so we check one more point from the interior.
Alternatively, one can figure it out from the fact that Möbius
transformations preserve orientation.

Let us take 1, i, and −1 as boundary points (−i is more than
enough, but we’ll check that one too as an alternative).

1 7→ 1 + i

i+ 1
= 1

i 7→ 2i

0
=∞

−1 7→ −1 + i

−i+ 1
= −1

−i 7→ 0.

From any three of these, we see that the image circle is the real
axis. Going around the unit circle from −1 to −i to 1, the unit
disk is to the left. The image domain must therefore also lie to
the left when going from −1 to 0 to 1. It follows that the image
is the upper half-plane {w ∈ C ; Im(w) > 0} rather than the
lower half-plane.

It would also suffice to observe that

0 7→ 0 + i

i · 0 + 1
= i,

which lies in the upper half-plane.
(b) We take a square root (the principal one) to map the domain

to a semicircle. Using the Möbius transformation from (a), we
can map the semicircle to a quadrant. Finally, squaring maps
the quadrant to the upper half-plane as required.
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It is useful to note that the transformation from (a) can be
written as

w =
z + i

iz + 1
=

1

i
· z + i

z − i
Checking 0, i, −i and 1 from the boundary of the semicircle,
we find that z 7→ z+i

z−i takes them to

0 7→ −1, i 7→ ∞, 1 7→ i, −i 7→ 0.

This gives the second quadrant (the points x+ iy where x < 0,
y > 0). The factor 1/i from w = 1/i · (z+ i)/(z− i) rotates this
back to the first quadrant. Squaring takes the first quadrant to
the upper half-plane.

�

z z1 =
√
z z2 = z2+i

z2−i z3 = z2/i z4 = z23

5. [5 points]
Determine the number of solutions to z5 − z + 1 = 0 with |z| < 2.

Solution. There are 5 solutions in the given disk.
Let

f(z) = z5 − z + 1

We use Rouché’s theorem to compare f to

g(z) = z5.

Their difference satisfies

|f(z)− g(z)| = | − z + 1| ≤ 1 + |z|.

We claim

|f(z)− g(z)| < |g(z)|
We estimate f − g as above, and write |g(z)| = |z|5. It is enough to
show

1 + |z| < |z|5

which indeed holds true on the circle |z| = 2 because 1 + 2 < 25. �
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6. [5 points: 1 point for (a), 2 points for (b), 2 points for (c)]
Suppose f is holomorphic inside and on the circle where |z| = 1. As-
sume f(0) 6= 0 and f(t) 6= 0 for all t on the circle |t| = 1.

(a) Why does f have only a finite number of zeros inside the disk
|z| < 1?

(b) Show that, if a1, . . . , an are the zeros of f inside the disk counted
with multiplicity, then the function

log

∣∣∣∣ f(z)∏n
k=1(z − ak)

∣∣∣∣
is a harmonic function in the unit disk.
(This function’s values at z = a1, . . . , an are determined by
continuity.)

(c) Deduce that

log |f(0)| =
n∑
k=1

log |ak|+
1

2π

∫ 2π

0

log |f(eiθ)|dθ.

Solution.

(a) There are only finitely many zeros in a bounded region because,
by the identity theorem, zeros of an analytic function cannot
accumulate. We assume f(0) 6= 0, so it cannot be that f is
identically 0.

(b) Inside the logarithm, f(z)÷
∏

k(z−ak) is holomorphic and non-
zero because a1, . . . , an are all the zeros of f . Therefore there
is a holomorphic logarithm, whose real part is the function in
question. The real part of a holomorphic function is harmonic.

(c) We apply the mean value property to the harmonic function
from part (b). Its value at 0 must be the average over the unit
circle:

log

∣∣∣∣ f(0)∏
k(0− ak)

∣∣∣∣ =
1

2π

∫ 2π

0

log

∣∣∣∣ f(eit)∏
k(e

it − ak)

∣∣∣∣dt
Rearranging the logs using log(p/q) = log(p) − log(q) (for real
p, q) gives

log |f(0)|−
∑
k

log |ak| =
1

2π

∫ 2π

0

log |f(eit)|dt− 1

2π

n∑
k=1

∫ 2π

0

log |eit−ak|dt

This is the desired formula, with one extra sum at the end. We
claim that ∫ 2π

0

log |eit − ak|dt = 0



for each k.
To prove the claim, since |eit| = 1, we can write

log |eit − ak| = log |1− ake−it|
We may take conjugates since |w| = |w| for any w, so

log |eit − ak| = log |1− akeit| = Re(log(1− akz)),

on the unit circle where z = eit. The function log |1 − akz| is
harmonic in the unit disk |z| < 1, because it is the real part of
a holomorphic function log(1 − akz) in that domain. We have
1−akz 6= 0 in the disk because |ak| < 1, so that z = 1/ak would
make |z| > 1. Therefore, by the mean value property, the value
of this harmonic function at z = 0 is equal to its average around
the circle:

0 = log(1) = log |1− ak · 0| =
1

2π

∫ 2π

0

log |1− akeit|dt

This proves the claim. �
Other solutions
Alternatively, one could show the integral is 0 by applying

Cauchy’s formula (or Cauchy’s theorem) for holomorphic func-
tions instead of the mean value property for harmonic functions.
Either way, the point is that |ak| < 1 so that one can define a
holomorphic logarithm log(1 − akz). We could also integrate
term by term in the power series

log(1− u) = −u− u2/2− . . .
That gives∫ 2π

0

log(1− ake−it)dt = −
∞∑
m=1

1

m
amk

∫ 2π

0

e−itmdt = 0

where the exponentials for m 6= 0 all integrate to 0 by period-
icity. Taking the real part shows once again that

∫
log |eit −

ak|dt = 0 as claimed.

�


