MATEMATISKA INSTITUTIONEN Tentamensskrivning i
STOCKHOLMS UNIVERSITET Matematik IIT Komplex Analys
Avd. Matematik 7.5 hp
Examinator: Matthew de Courcy-Ireland 2024/10/26

No calculators, books, or notes allowed.
Each problem is worth 5 points; total 30, grade E attained at 15.
There are six problems in total, printed on both sides of the page.

1. Given t € R, use the residue theorem to evaluate
< 1
/_OO o2 exp(—2mitz)dz.

Solution. The final answer is

oo
/OO ﬁ exp(—2mitz)dr = wexp(—2m|t|).
One can either treat separate cases for ¢t > 0 and ¢ < 0, or observe
from the beginning that the final answer must be an even function
with respect to £¢. In the latter approach, it is enough to treat only
one of the two cases in detail.

The answer can be deduced from the residue theorem. We consider
the function

f(z)= T exp(—2mitz).

We integrate f over a semicircular contour. Let C' be the segment from
—R to R, together with a semicircle of radius R, where R > 1 is a large
parameter. The semicircle should lie either in the lower half-plane if ¢
is positive or in the upper half-plane if ¢ is negative (both choices work
if t = 0). The circular part is oriented clockwise in the lower half-plane,
or clockwise in the upper half-plane.

—R R

-R R

The function f is analytic except for poles at z = 4i. Only one of
these lies inside the semicircle. To find the residue, write

1 :
f(z) = m exp(—2mitz).
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The residue is
) 1
Res(f(z),z = £i) = moY exp(+2mt).

We have chosen the contour so that =+ is the sign opposite to ¢t. That
means +t = —[t| in all three cases (t > 0, t < 0, or t = 0). Therefore
the residue is

Res(f(z),z = +i) = j:% exp(—2m|t|)

Recall that the usual statement of the residue theorem assumes the
path of integration is oriented anticlockwise. If C' goes clockwise in-
stead, this introduces another sign. By the residue theorem,

+ /0 f(z)dz = 2miRes(f(z), z = %i)

The sign cancels so that, in both cases,

/ f(2)dz = mexp(—27|t]).
c
We claim the integral over the circular part of C' vanishes as R — oc.

On the circle where |z| = R,

N+2%>2P-1=R"~1
by the triangle inequality. If z = x 4 1y, then

exp(—2mitz) = exp(—2mitzx) exp(27ty).

Assuming ¢ and y have opposite signs, it follows that

| exp(—2mitz)| < 1.

Therefore, on the semicircle where |z| = R and Im(z) has the sign
opposite to t, we have a bound
1
< .
NEE——

The circular part of C' has length 7R. By the triangle inequality for

integrals,
| [ e

as R — oo. This shows that, as R — oo, only the integral over the
linear part of C' survives:

7rexp(—27r|t|):/Cf(z)dz%/::f(x)dx.

<7R- —0

1
R2—1




Rubric for Task 1. The 5 points for this task are awarded for

e Choosing a relevant function f(z)

e Choosing a contour (depending on the sign of ¢)

e Finding the poles and residues

e Relating the desired real integral to a complex contour integral.
In particular, some estimates are needed to show that the cir-
cular part of the contour can be ignored as R — oo. This can
be done by hand, or quoting results such as “Jordan’s lemma”.

e Stating the residue theorem or other results used

(2
/ / exp( ﬂwz)dwdz
|z|=1 J|w|=1 1—4zw

where both circles are oriented anticlockwise.

O
2. Evaluate

Solution. Apply Cauchy’s integral formula to the integral over w.
exp(2rwz) 1 exp(2rwz)
1—dzw  dzw—1/(42)

For any z on the circle |z| = 1, we have |1/(4z)| = 1/4 so this point
lies inside the contour of integration with respect to w. The function
w +— exp(2mwz) is holomorphic, so by Cauchy’s formula

exp(2rwz) , 1
SPETEE) g = 2 o — -
/w—l/(4z) w = 2mi exp( Ly 2)

Next the integral over z can be evaluated. Either by direct parametriza-
tion, or by Cauchy’s formula again, or by the residue theorem, one has

1
/—dz = 2711.
z

exp 27Twz) 1
/z| 1/w| 1 1 —4zw ® / Az mi exp(m/2)dz

= —%(27@2 exp(m/2)

= 1 exp(n/2).

In total,

O

Rubric for Task 2. This task offers a choice between using the residue
theorem or Cauchy’s formula. Either way, partial credit toward the 5
points may be awarded for



e Stating Cauchy’s formula, the residue theorem, or any results
you use

e Commenting on why w = ﬁ lies inside the contour

e Calculating the residue if you used the residue theorem, or
rewriting the function in a way that allows Cauchy’s formula to
be applied

e Evaluating the outer integral [z 'dz by any preferred means
(for example: parametrizing z = €, or quoting it as a known
result, or using the residue theorem, or Cauchy’s formula)

e Saying something about analytic/holomorphic functions of two
complex variables (Cauchy’s formula for a polydisk)

[l

3. Calculate all the Laurent series of

around the point zg = 2.
[Hint: your answer should take a different form in each of a finite
number of annular domains.|

Solution. There are four different Laurent series, corresponding to the
annular domains

O0<|z—=z2| <1, 1<|z—2)]|<2, 2<|z—2]|<3, 3<]|z— 2]

This is because f(z) has singularities z = 1,0, —1 lying on their re-
spective circles |z — zg| = 1, |z — 20| = 2, |z — 20| = 3. Because f has
no singularity at 2y, one can also write the innermost domain as a disk
|z — 29| < 1 rather than a punctured disk 0 < |z — zp| < 1.

The partial fraction for f is

2 2 1 1

f(z):z(ZQ—l) _;+Z—1+Z+1
With respect to the center zy = 2, this is
2 1 1
&=yt eoys1 e 13
The three parts can all be written as geometric series, but we need to

know the size of z — 2 compared to the other terms +2, +1, or +3 in
the denominator. Recall that the geometric series is

1 oo
ik R D OU}
n=0



which converges for |g| < 1. It is also convenient to note the alternating

version, which follows after replacing ¢ by —g:

o0

1
— =1l—g+F+... = —1)"g"
g q+q nEO( )"q
again for |g| < 1. To expand a term m, we apply these formulas

with either ¢ = (2 — zp)/a or ¢ = a/(z — 2z) depending on which choice

makes |¢| < 1.

The next step is to write each contribution to f in the form

where |¢| < 1. If 0 < |z — 2| < 1, then

B 1 1 1/3
L By Y R B oy Sl pwy pep 1y
If 1 <|z—2| <2, then
B 1 1/(z—2) 1/3
f<z)__1+(z—2)/2 1+1/(z=2) 1+ (2-2)/3
If 2 < |z —2| <3, then
F) = — 2/(z — 2) 1/(z - 2) 1/3
1+2/(z—=2)  1+1/(—2) 1+ (z2—2)/3
If 3 < |z — 2|, then
F) = — 2/(z — 2) 1/(z —2) 1/(z —2)
112/(z—-2)  1+1/(z—2) " 1+3/(z-2)



Finally, the Laurent expansion in each annulus is one combination
or another of the following geometric series:

1

o0

1+(z-2)/2 ;(_I)HQ_H(Z -
1 () "
TG nzo(—l) (2 —2)
1/3 1«
1+(z—2 gz% =27
1/(Z _ 2) _ -1 - n n
m—( - 2) HZ:O<—1) (z—2)
2/(z—-2) e o .
Tr2/Gg " 2(z — 2) 2(—1) 2"(z — 2)
1/(Z _ 2) _ -1 - naon
143/(z—2) (z—2) nz:;—l) 3"z —2)
If 0 < |z —2| <1, then
1 1 1/3
JC<Z>:_1+(2—2)/2Jr 5 G-2) T _2)/3
== (-)2"(z-2)"+ Z (z—2)"+ ; Z(—l)"?r”(z —2)"
Only positive exponents n > 0 occur, and the total is
flz) =) ()" =243 (z —2)"

If 1 < |z — 2| <2, then we have to rewrite one of the three terms:

- 1 1/(z = 2) 1/3
f(Z)—_H_(Z_Q)/Q 1+1/<z_z>+1+<z—2>/3

o 1 oo
=— —1)m27"( "4 —2)” = —-1)"3 " (z —2)"
> e DO AR
In this case, both positive and negative exponents occur. We have

= _9\n _ (=n)mH2 4 (=1)"3 ™ ifn >0
f(z) _Za”(z 2 = {(—1)n+1 ifn<0

neL



If 2 < |z — 2| < 3, then

O 2)(z-2) 1/(z—2) 1/3
O a0 /G-y T G-

:_22 "2z —2)7 T Y (D)2 -2+ Z Mz —2)"

Again, both positive and negative exponents occur. This time

B . CJ=rst i >0
=D (= =2, = {(—1)n(2—n ~1) ifn<0

neZ

If 3 < |z — 2|, then

) = — 2/(z—2) 1/(z—2) 1/(z—2)
1+2/(z—2) 1+1/(z—2) 1+3/(z—2)

:—22 1)"2" (2 —2)—”—1+§:(—1)n(z— e 1+Z )3 (z —2)™"

In th1s outermost case, there are only negative exponents.

o0

F@) =) (=)= +1+3") (2 —2) "

n=0
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Rubric for Task 3. The 5 points for this task are awarded for

e Annuli (finding the domains where the Laurent series takes dif-
ferent forms)

e Partial fraction

e Geometric series

e Adding the series together, simplifying the answer

e Recalling relevant theorems or definitions (for example, the in-
tegral formula for the coefficients of a Laurent series)

U
4.

(a) Under the transformation
z—1
z+1
determine the image of the half-plane {z € C ; Re(z) > 0}.
(b) How many solutions are there to
(z—1P+3z-1D*z+D+(z+1)2=0
subject to the constraint Re(z) > 07

Z




Solution.

(a)

The image is the unit disk. We can check where the transfor-
mation takes 0, i, and oo (three points on the boundary).

0~ —1
)
oo +— 1

The unit circle is the unique circle/line through the images —1,
17, and 1. The image of the half-plane must therefore be either
the inside (Jw| < 1) or the outside (Jw| > 1). Checking one
more point in the interior, we find

1—0

with |0] < 1. It follows that, as claimed, the image is the unit
disk.

Alternatively, consider the orientation of a path going upward
from 0 to i to oo, with the region {Re(z) > 0} lying to the right.
The image of the path goes clockwise from —1 to ¢ to 1. To
keep on the right of this path, the image of {Re(z) > 0} must
therefore be the unit disk.

The solutions are given by

w® + 3w +1=0

where
oz
o241
We are free to divide by z 4+ 1 because z = —1 is not one of the
solutions:
(z—=1P+3z-12z+1D)+(z+1)0°*=-8#0
(and even if z = —1 did solve the equation, it would not satisfy

the constraint Re z > 0).

By part (a), the constraint Re(z) > 0 corresponds to |w| < 1.
Using Rouché’s Theorem, we can show that this polynomial has
2 roots in the unit circle, the same number as 3w?. Let g(w) =
w? 4+ 3w? + 1 be the given polynomial, and let f(w) = 3w?. On
the curve |w| = 1, we have

[f(w) = g(w)| = [w’ +1] <2 <3 = |f(w)].
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Both polynomials are holomorphic inside, with no roots on the
circle (clear for 3w?, and also true for w?® + 3w? + 1 by the
triangle inequality). Therefore f and g have the same number
of zeros in the unit disk, that is, 2 zeros since w = 0 is a double
root of 3w?.

O

Rubric for Task 4. The 5 points are split into 2 points for (a) and 3
points for (b). Partial credit can be earned from various steps:

e Mobius transformations take circles to circles

e Finding that the image is the unit disk.

e Using the transformation from (a) to set up (b)

e Statement of Rouché’s theorem

e Correct application of Rouché’s theorem to show the equation
has 2 solutions subject to the constraint.

O
5. Define two operators acting on smooth functions by
0 0 0 0
L = — — Lo(h) = —h —i—
1(h) axh‘f—layh, 2( ) 83}h Zayh

where h : D — C is a function with continuous derivatives of all orders
on some domain D.

(a) Show that L; o Ly = Ly o L; where o denotes composition.
(b) Show that h is harmonic if and only if L;(Ly(h)) = 0.
(c) Let h(z,y) = (x —iy)?*** + exp(x) cos(y) + i exp(z) sin(y). Is h
harmonic?
Solution.

(a) Suppose h is a smooth function on D. In particular, suppose h
has continuous derivatives up to second order. That guarantees
the equality of mixed partials

Ny = hyz
where we write subscripts to denote the partial derivative with
respect to the indicated variable. By definition of L; and Lo,
Ll((LQ(h)) = Li(hy — ihy)
= (hy —ihy), + i(hy —ihy),
= Nyg — thyy + thayy + hy,

using i2 = —1 at the last step. The mixed partials cancel out,
leaving

Ly ((L2(h)) = haw + Ty
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Composing in the opposite order,
Ly ((L1(h)) = La(hy + ihy)
= (hy +ihy), — i(hy +ihy),
= hgy 4 thyy — ihgy + hy,
where the same cancellation happens as before. Therefore
L2(<L1(h)) = haw + hyy = L1(<L2<h))‘

This shows that L; o Ly = Ly o Ly as operators on smooth
functions. 0
By definition, h is harmonic if and only if it solves Laplace’s
equation hg, + hy, = 0. From the proof of part (a), we know
that L;(Ls(h)) = 0 is an equivalent way to write Laplace’s
equation (at least for smooth functions, but smoothness of & is
given from the start of the problem). O
Yes, h is harmonic. It can be checked directly that Ay, +h,, = 0.
There is also a shortcut involving L; and Ls. In terms of a
complex variable z = x + 1y, we have

h(z,y) = (v —iy)*™ + exp(z) cos(y) + i exp(z) sin(y)
= 72024 1 exp(2)
It follows from the Cauchy—Riemann equations for exp(z) that
Liexp(z) =0.

Taking the conjugate of the Cauchy-Riemann equations for
22024 gives
Ly7°%% = 0.
We can combine these using the fact that L; and L, are linear
operators. We also know Lj o Ly = Ly o Ly from part (a). That
gives
Li(La()) = L1 (L2(2*Y) + Ly (L1 (exp(2)) )

= L1(0) + Ly(0)

= 0.
This shows that h is harmonic, using part (b).

Rubric for Task 5. The 5 points are achieved as 2+1+2 for (a)+(b)+(c).
If Ly (Lg(h)) is miscalculated, partial credit is possible from

e Defining harmonic functions in (b)
e Computing derivatives of the function A from (c)
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6. Let f be a function holomorphic on C except for poles, and

satisfying
fe+1)=fz+1i) = f(2)
for all z € C.

Let S be the square with corners 0, 1, 7, and 1 + 7. Let C be the
boundary of S oriented anticlockwise. Assume f is not identically 0,
and that f does not have any zeros or poles on C.

For p a zero or pole of f, define m,(f) as follows. If p is a zero of f,
let m,(f) be its order. If p is a pole of f, let —m,(f) be the order of
the pole.

(a) Show that
Z my(f) =0

where the sum is taken over all zeros and poles of f inside S.
(b) What are the poles and residues of zf'(z)/f(z)?
(c) Show that the real and imaginary parts of

Zmp(f> p

are both integers (0, £1,£2,...).

Solution.

(a) By the argument principle,

1R, s
27 Cf(z)d —; p(f).

It is enough to show the integral is 0.

We claim that the integrand f’/f has the same periodicity
as f. Differentiating both sides of f(z + 1) = f(z) shows that
f'(z+ 1) = f(2), and similarly for the other translation z
z + 4. This shows that f’ is also periodic with respect to the
same translations as f. Therefore f'/f is also periodic.

The square C' has two pairs of opposite sides, where f'/f
takes the same values but the orientation is reversed. Each pair
therefore cancels, leaving

f/

(b) The poles of zf'(z z) are the poles of f together with the
zeros of f. There i 1s some question of whether a pole of f'/f at
z = 0 could cancel with the other factor z, leaving a removable
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singularity. However, we are assuming f has no poles on C, so
in particular z = 0 is not a pole.

The residue is m,(f) - p. We already know from the proof
of the argument principle that f’/f has residue given by the
multiplicity, and the extra factor p is the value of z at the point
p.

By the residue theorem, taking part (b) as a hint,

R O o W

The sides of C' can be parametrized by z = z (0 < z < 1), then
z=1+4+1y (0 <y <1), then z = z + i with x going backwards,
and finally a downward trajectory z = iy. We must not forget
factors of ¢ from dz = idy on the vertical sides. Integrating over
the square one side at a time gives

= e e

—/O<w+@>f'§if -+, i

As in the solution for (a), we know that f’/f is periodic under
x +— x +1 and 2y — 1y + 1. Therefore

5t [ et |

These integrals can be evaluated in terms of logarithms, using
the antiderivatives

fllx) _d S'y) _ d
= —log f(x), 1 log f(1y
fo) e T Gy T ay o)
We have assumed that f has no zeros on C, so it is possible to
define logarithms of f(z) and f(iy). Integration then gives

FE) g o ™ s 1on i
z dz =1log f(x + log f(z
/C ) gf(@)| _, +logflw)]
There are many choices of logarithm, which differ from each
other by an additive constant that disappears under d/dx or
d/dy, but may return after integration. By periodicity, f(z)

takes the same value at £ = 1 and z = 0. Therefore

log f(z =1) —log f(x = 0) = 2mia
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for some integer a. Likewise f(iy) takes the same value at both
endpoints, so the logarithms can only differ by 27ib for some
integer b.

It follows that, for some integers a and b,

/C z]}/((j)) dz =i - 2mia + 2mib = 2mi(b + ia).

Combining this with the residue calculation from above, we find
Zmp(f) -p=>b+ia
p

where both the real and imaginary parts are integers.

Rubric for Task 6. The 5 points correspond to

e Stating the argument principle

e Observing that opposite sides of the square cancel because f is
doubly periodic

e The poles of zf/(z)/f(z) are the poles as well as the zeros of f

e The residues are m,(f) - p

e Using properties of logarithms and periodicity of f to complete
the proof of (c)

O

All the rubrics:
Rubric for Task 1: The 5 points for this task are awarded for

e Choosing a relevant function f(z)

e Choosing a contour (depending on the sign of t)

e Finding the poles and residues

e Relating the desired real integral to the complex contour inte-
gral. In particular, some estimates are needed to show that the
circular part of the contour can be ignored as R — oo. This can
be done by hand, or quoting results such as “Jordan’s lemma’.

e Stating the residue theorem or other results used

Rubric for Task 2: This task offers a choice between using the residue
theorem or Cauchy’s formula. Either way, partial credit toward the 5
points may be awarded for

e Stating Cauchy’s formula, the residue theorem, or any results
you use

e Commenting on why w = ﬁ lies inside the contour

e Calculating the residue if you used the residue theorem, or
rewriting the function in a way that allows Cauchy’s formula to
be applied
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e Evaluating the outer integral [ z'dz by any preferred means
(for example: parametrizing z = €, or quoting it as a known
result, or using the residue theorem, or Cauchy’s formula)

e Saying something about analytic/holomorphic functions of two
complex variables (Cauchy’s formula for a polydisk)

Rubric for Task 3: The 5 points for this task are awarded for

e Annuli (finding the domains where the Laurent series takes dif-
ferent forms)

e Partial fraction

e Geometric series

e Adding the series together, simplifying the answer

e Recalling relevant theorems or definitions (for example, the in-
tegral formula for the coefficients of a Laurent series)

Rubric for Task 4: The 5 points are split into 2 points for (a) and 3
points for (b). Partial credit can be earned from various steps:

e Mobius transformations take circles to circles

e Finding that the image is the unit disk.

e Using the transformation from (a) to set up (b)

e Statement of Rouché’s theorem

e Correct application of Rouché’s theorem to show the equation
has 2 solutions subject to the constraint.

Rubric for Task 5: The 5 points are achieved as 2+14-2 for (a)+(b)+(c).
If Ly (LQ(h)) is miscalculated, partial credit is possible from

e Defining harmonic functions in (b)
e Computing derivatives of the function h from (c)

Rubric for Task 6: The 5 points correspond to

e Stating the argument principle

e Observing that opposite sides of the square cancel because f is
doubly periodic

e The poles of zf/(2)/f(z) are the poles as well as the zeros of f

e The residues are m,(f) - p

e Using properties of logarithms and periodicity of f to complete
the proof of (c)



