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At least one answer is correct for each question.
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What is true for every problem in P?

a
b

(a) they can be solved by a deterministic algorithm in polynomial time
(b)
(c) they are optimization problems
(d)
(¢)

they are decision problems

d

€

they can be solved by a non-deterministic algorithm in polynomial time

they are verifiable in polynomial time
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What is true for every problem in NP?

(a) ??7 they can be solved by a deterministic algorithm in polynomial time 2?7 (we don’t
know!)
(b) they are decision problems
(©)
d) they can be solved by a non-deterministic algorithm in polynomial time
y g poly
(¢)

e) they are verifiable in polynomial time



What is P respectively N P short for?

a) Problematic respectively Non-Problematic

c) Polynomial respectively Non-Polynomial

(a)
(b) Polynomial respectively Non-deterministic Polynomial
(c)
(d)

Easy-Peasy respectively Not Easy-Peasy



What is P respectively N P short for?

a

(a)
(b) Polynomial respectively Non-deterministic Polynomial
(©)
(d)

d



Question 4

How do we prove that a decision problem lies in the class N P?

(a) Provide a deterministic algorithm that solves the problem in polynomial time

—~
o
~

Provide a deterministic algorithm that verifies if a certificate! is correct

(c) Reduce the problem (in polynomial time) to another decision problem we already
know lies in NP

(d) Reduce (in polynomial time) a decision problem we already know lies in NP to
the problem in question

(e) Provide a non-deterministic algorithm that solves the problem in polynomial time




Question 4

How can we prove that a decision problem lies in the class N P?

(a) Provide a deterministic algorithm that solves the problem in polynomial

time
(b) Provide a deterministic algorithm that verifies if a certificate is correct
(c)
(d)
(e) Provide a non-deterministic algorithm that solves the problem in

polynomial time



What are we absolutely certain of ?

(a
(b
(
(

) Every problem in P lies in NP
)
c) Every problem in NP lies in P
)
)
)

There is a problem in NP that is not in P

d) Every N P-hard problem is N P-complete

e) Every N P-complete problem is N P-hard

(
(f) Every problem in NP is N P-complete



What are we absolutely certain of ?

(a) Every problem in P lies in NP
(b)

(c)
(d)
(¢)
(f)

Every N P-complete problem is N P-hard



What is true for every N P-hard problem?

a
b

(a) They lie in NP and are N P-complete
(b)
(c) They are decision problems
(d)
(e)

They are optimization problem

d

(S

They are at least as difficult to solve as any other N P-hard problem

They can be solved by a non-deterministic algorithm in polynomial time



What is true for every N P-hard problem?

They are at least as difficult to solve as any other N P-hard problem



Short arguments for why:

Problems Why correct? Problems Why incorrect?

1(a), 1(b), 2(b), | Definition of P | 1(c), 2(c) Definition of P

2(d), 2(e) resp. NP resp. NP

1(d), 1(e) PCNP 3(a),3(d) Nonsense

3(b) Just correct 3(c) Just incorrect
(common
mistake)

4(a), 5(a) PCNP 4(c), 4(d) You would need

a reduction in
both directions.
Just one is not
enough!



Short arguments for why:

Problems Why correct? Problems Why incorrect?
4(b), 4(e) Definition of P || 5(b), 5(c), 5(f) We don’t know wether P =
resp. NP NPor PCNP
5(e) Definition of || 5(d), 6(a) E.g. optimization problems
N P-complete may be NP-hard, but
definitely not in NP
6(d) Reductions 6(b), 6(c) NP-hard can be either
optimization or  decision
problems
6(e) Counterex: halting problem




Highlights

m P and NP contains decision problems



Highlights

m P and NP contains decision problems
m P C NP is known, but P= NP or P C NP is open



Highlights

m P and NP contains decision problems
m P C NP is known, but P= NP or P C NP is open
m N P-complete C N P-hard, e.g. optimization problems can be N P-hard



Highlights

m P and NP contains decision problems

m P C NP is known, but P= NP or P C NP is open

m N P-complete C N P-hard, e.g. optimization problems can be N P-hard
[

Show in P by providing polynomial-time algorithm that solves the problem



Highlights

m P and NP contains decision problems

m P C NP is known, but P= NP or P C NP is open

m N P-complete C N P-hard, e.g. optimization problems can be N P-hard

m Show in P by providing polynomial-time algorithm that solves the problem

m Show in NP by providing polynomial-time algorithm that verifies the problem



Highlights

m P and NP contains decision problems

m P C NP is known, but P= NP or P C NP is open

m N P-complete C N P-hard, e.g. optimization problems can be N P-hard

m Show in P by providing polynomial-time algorithm that solves the problem

m Show in NP by providing polynomial-time algorithm that verifies the problem
m A is a NP-hard problem if we can reduce a known N P-hard problem B TO A



Highlights

m P and NP contains decision problems

m P C NP is known, but P= NP or P C NP is open

m N P-complete C N P-hard, e.g. optimization problems can be N P-hard

m Show in P by providing polynomial-time algorithm that solves the problem

m Show in NP by providing polynomial-time algorithm that verifies the problem
m A is a NP-hard problem if we can reduce a known N P-hard problem B TO A
m A is a NP-complete problem if it is in NP and it is N P-hard



Minimum spanning tree

Consider the following problem
Input: A graph G = (V, E) with edge-weights 0 : E — N
Output: The weight of a minimum spanning tree
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Output: True if there is a minimum spanning tree of weight < k, otherwise False
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