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At least one answer is correct for each question.

Question 1
What is true for every problem in P?

(a) they can be solved by a deterministic algorithm in polynomial time
(b) they are decision problems
(c) they are optimization problems
(d) they can be solved by a non-deterministic algorithm in polynomial time
(e) they are verifiable in polynomial time
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Question 2
What is true for every problem in NP?

(a) they can be solved by a deterministic algorithm in polynomial time
(b) they are decision problems
(c) they are optimization problems
(d) they can be solved by a non-deterministic algorithm in polynomial time
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Question 2
What is true for every problem in NP?

(a) ??? they can be solved by a deterministic algorithm in polynomial time ??? (we don’t
know!)

(b) they are decision problems
(c) they are optimization problems
(d) they can be solved by a non-deterministic algorithm in polynomial time
(e) they are verifiable in polynomial time
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Question 3
What is P respectively NP short for?

(a) Problematic respectively Non-Problematic
(b) Polynomial respectively Non-deterministic Polynomial
(c) Polynomial respectively Non-Polynomial
(d) Easy-Peasy respectively Not Easy-Peasy
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Question 4
How do we prove that a decision problem lies in the class NP?

(a) Provide a deterministic algorithm that solves the problem in polynomial time
(b) Provide a deterministic algorithm that verifies if a certificate1 is correct
(c) Reduce the problem (in polynomial time) to another decision problem we already

know lies in NP

(d) Reduce (in polynomial time) a decision problem we already know lies in NP to
the problem in question

(e) Provide a non-deterministic algorithm that solves the problem in polynomial time

1i.e. YES-instance
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Question 4
How can we prove that a decision problem lies in the class NP?

(a) Provide a deterministic algorithm that solves the problem in polynomial
time

(b) Provide a deterministic algorithm that verifies if a certificate is correct
(c) Reduce the problem to another decision problem we already know lies in NP

(d) Reduce a decision problem we already know lies in NP to the problem in question
(e) Provide a non-deterministic algorithm that solves the problem in

polynomial time
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Question 5
What are we absolutely certain of?

(a) Every problem in P lies in NP

(b) There is a problem in NP that is not in P

(c) Every problem in NP lies in P

(d) Every NP -hard problem is NP -complete
(e) Every NP -complete problem is NP -hard
(f) Every problem in NP is NP -complete
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Question 6
What is true for every NP -hard problem?

(a) They lie in NP and are NP -complete
(b) They are optimization problem
(c) They are decision problems
(d) They are at least as difficult to solve as any other NP -hard problem
(e) They can be solved by a non-deterministic algorithm in polynomial time
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Short arguments for why:
Problems Why correct? Problems Why incorrect?
1(a), 1(b), 2(b),
2(d), 2(e)

Definition of P
resp. NP

1(c), 2(c) Definition of P
resp. NP

1(d), 1(e) P ⊆ NP 3(a),3(d) Nonsense
3(b) Just correct 3(c) Just incorrect

(common
mistake)

4(a), 5(a) P ⊆ NP 4(c), 4(d) You would need
a reduction in
both directions.
Just one is not
enough!
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Short arguments for why:
Problems Why correct? Problems Why incorrect?
4(b), 4(e) Definition of P

resp. NP
5(b), 5(c), 5(f) We don’t know wether P =

NP or P ⊊ NP

5(e) Definition of
NP -complete

5(d), 6(a) E.g. optimization problems
may be NP -hard, but
definitely not in NP

6(d) Reductions 6(b), 6(c) NP -hard can be either
optimization or decision
problems

6(e) Counterex: halting problem
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P and NP contains decision problems

P ⊆ NP is known, but P = NP or P ⊊ NP is open
NP -complete ⊊ NP -hard, e.g. optimization problems can be NP -hard
Show in P by providing polynomial-time algorithm that solves the problem
Show in NP by providing polynomial-time algorithm that verifies the problem
A is a NP -hard problem if we can reduce a known NP -hard problem B TO A

A is a NP -complete problem if it is in NP and it is NP -hard
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Consider the following problem
Input: A graph G = (V, E) with edge-weights σ : E → N
Output: The weight of a minimum spanning tree

Is it a decision problem? No – what is one way to rephrase it as a decision problem?

Input: A graph G = (V, E) with edge-weights σ : E → N, and k ∈ N
Output: True if there is a minimum spanning tree of weight ≤ k, otherwise False
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