Largest consecutive sublist sum

input: list L= [x, xz, ..., xu]

output: largest possible sum of a consecutive sublist

Ex [L=[1,2,3,4] -> 10

 $E \times 2$ L = [-1,1,-1]Many sublists with sum = 1

Ex3 L= [1,2,3-10,5,-10]

Ex3 shows greedy approach (pick mux element and try to extend left and/or right)

15 hot a good stritegy.

For isj define
$$S_{ij} = x_i + x_{in} + ... + x_j$$

Solution to problem is rephrased as

$$\max \{S_{ij} \mid 1 \leq i \leq j \leq n \}$$
 (*)

for
$$j = 1,2,...n$$
:

$$|for i = 1,2,...,j|$$

$$|Sij \leftarrow Xi + ... + Xj|$$

$$|for i = 1,2,...,j|$$

$$|Sij \leftarrow Xi + ... + Xj|$$

$$|for i = 1,2,...,j|$$

ouch so maybe $O(u^2) \text{ or } O(u^2) \text{ number,}$

Say L' is consecutive sublist L[i...j] with max sum. Then either L'=[x;j] or the sublist $[x_i...x_{j-1}]$ must be best sublist [L[i...j]] in L[1...(j-1)].

Want to "reuse" computations as much as possible.

Debre

Clearly

Solves main problem.

Let's calculate S; "clewety".

Claim
$$S_{j} = \begin{cases} x_{1} & \text{if } j=1\\ max(x_{j},x_{j}+S_{j-1}) & \text{otherwise.} \end{cases}$$
(***)

Proof of claim

By induction on j.

Base j=1: Best sublist of $[x_i]$ is all of it, with sum x_i .

(IH) sps (***) holds Br some j≥1. Consider Sj+1, By definition j+1≥2 and

 $S_{j+1} = \max \left\{ S_{i,j+1} \left| 1 \le i \le j+1 \right\} \right. \right. \right. \left. \begin{array}{l} \text{every sum } i < j+1 \\ S_{i,j+1} \text{ ends } \text{ with } \\ \text{term } x_{j+1} \text{ i.e.} \\ S_{i,j+1} = S_{i,j} + X_{j+1} \end{array} \right.$

= $\max \left(S_{j+1,j+1} / \max \left\{ S_{i,j} + x_{j+1} \right\} | \le i \le j \right)$

= max (X;+1, max {Si; | 1 \le i \le j \right] + x;+1) / apply Ith

= max (xj+1, Sj + xj+1)

This proves the claim.

Can now transform to algorithm

ALG (L: list of length u)

1 D = new list of length u // will coursin S;'s

2 D[i] = L[i] // S_i = x_i

3 for
$$i = 2, 3, ..., n$$
:

4 (D[i] = max (L[i], L[i] + D[i-1])

5 return max(D)

correctness; almost immediate from claim, just note that D[i] = S; Y Isian (inductively, if you want). Hence the output max (D) is

$$max (S_1, S_2..., S_n) = max \{ S_{ij} | 1 \le i \le j \}$$

= $max \{ S_{ij} | 1 \le i \le j \le n \}$

Which is what we want

Runtime: lines 1 & 4 (once) O(1)

lines 2,5 & loop total O(u)

-> together O(n).

Recap matroids

(E,F) a matroid it

(MI) F + Ø

MZ) XSYLYEFF => XEF

(M3) X,Y E # & |X| < |Y| => 3 y E Y | X S.t. XUy E #

An C-maximal element in FF is a basis.

Thin (lecture) Bases of matroid M have same size.

Show "Basis exchange property": M= (E, II) a metroid with two bases B&B!

Pf Say exB\B1.

(M3) implies
$$\exists f \in B' \setminus (B-e)$$
 s.t.
 $(B-e) \cup f \in \mathbb{F}$.

In fact, $e \in B \setminus B'$ wears $f \in B' \setminus (B-e) = B' \setminus B$.

and |C| > |(B-e)Uf| = |B|, confindiction to B being a basis.

For you

Let M = (E, F) be a material & $w: E \to \mathbb{R}_{\geq 0}$ a weighting function. Show

 $w(e) \neq w(f) \forall e, f \in E \Rightarrow An optimal* basis of M (wrt w) is unique.$

*B is optimal basis wrt w if w(B) \geq w(B') \forall bases B' of M

Hint: Assume, for controliction, two optimal bases B1B! Pick element in symmetric difference B \DB' (\DD) of minimal weight. Then basis exchange property 1 find a controliction.