Problem: Subset sum (optimization veritor)

Input: $L = [x_1, ..., x_n]$, a list of positive integers and some $t \in \mathbb{Z}_+$

Output: A sublist $L' = [X_{1,1}X_{12,1}...,X_{im}]$ weressanly consecure such that

t - \(\sum_{\bar{1}=1}^{m} \times_{\bar{1}} \), is nonnegative & minimi \(\alpha \)ed

That is: sum of elements in L' as close to t as possible (but does not exceed t)

Theorem (original Karp problem)

Subset sum (the decision version, Yes/No EL'=t)

15 NP-hard

NP-hardness omitted here - from vertex cover, SAT, partition, etc... Look up if interested!

Given this algorithm:

Show that approx-SS is a 2-approximation.

Proof

Fix input L&t.

Let OPT denote optimal solution and ALG the output of approx_SS(L,t).

To show 2-approx we need to show

1 ZOPT & EALG & 25 OPT

EALG & ZOPT & t so this is definitely thre

We fows on { ZOPT & ZALG.

For simplicity, say L is already sorted i.e. $L = [x_1, x_2, ..., x_n]$ S.t. $x_1 \ge x_2 \ge ... \ge x_n$

Case 1: approx_SS(L,t) adds no element to Q at all i.e. ALG = [] empty list.

Can only happen if x; > t for all i.

But Then ZOPT = 0 as well and

SALG = ZOPT = ZEOPT

Case 2: approx_SS(Lt) adds some, but not all elements. Find ilj s.t. I \(\int \) \(\int \) and

We know:

• $X_{1,1} \times_{2,1} \dots, X_{i-1}$ are all > t (otherwise would be added)

Thus none of these in OPT either

Case 29

If j=n then $\sum OPT = \sum_{k=1}^{n} x_k = \sum ALG$

Case 26

If j. < n then, by alg, we have

 $x_i + x_{i+1} + x_j \le t$ $x_i + x_{i+1} + x_j + x_{j+1} > t$ one of there must be at least $\frac{t}{2}$.

If
$$x_{j+1} > \frac{1}{2}$$
 then $x_j \ge x_{j+1} \ge \frac{1}{2}$ imply $x_{j+1} + x_j \ge \frac{1}{2}$. So, either way, we have:

$$x_{i+\cdots}+x_{j}\geq \frac{t}{2}$$
. Hence $\sum ALG \geq x_{i}+\cdots+x_{j}\geq \frac{t}{2}\geq \frac{\sum opt}{2}$ and we're done.

Remark

It is quite hard to find examples where $SALG = \frac{1}{2}SOPT$, but for some small E70

so eg
$$t = 100000$$

$$L = [50\ 001,\ 50\ 000,\ 50000]$$

Problem Max-cut (optimization)

Input: gaph G=(VE)

OUTPUT: A maximum cut (S,t) of G

det A cut of $G=(V_iE)$ is a pair (S,T) such that $S\subseteq V$ & $T=V\setminus S$. The size of the cut is

[{streE|seSateT3].

A maximum cut is a cut of max size.

cut of size 5

$$S = \emptyset, T = \emptyset$$

S=0,T=0

FOR VEV.

If v has more neighbors in S

| thin in T

| T = TU{v}

else
| S = SU{v}

PETURN (S,T)

Show: approx_cut(G) is a 2-approx.
of max-cut.

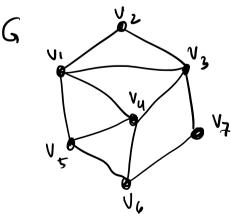
Proof

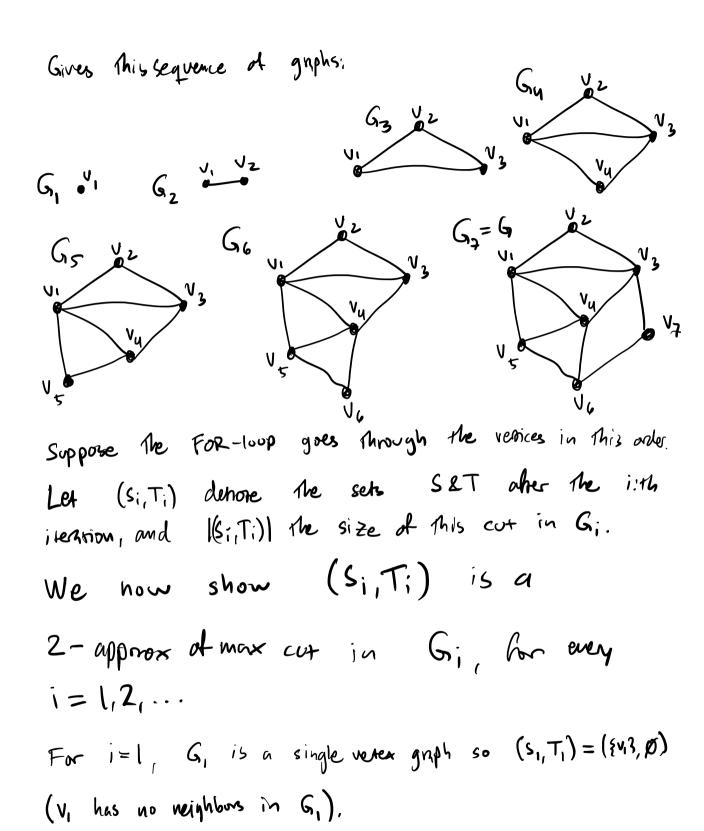
ALG = Size of cut by algorithm

OPT = tove maximum.

Maximization problem so show ZOPT & ALG

Fix an order $V_{1,...}, V_{n}$ of G's vertices. Consider induced subgraphs $G_{1,...}, G_{n}=G_{n}$ on these vertices. Example:





Sps.
$$|(S_i,T_i)| \ge \frac{1}{2} OPT(G_i)$$
 for some $i \ge 1$.

The algorithm ensures that

$$|(S_{i+1},T_{i+1})| \ge |(S_{i},T_{i})| + \frac{1}{2} \operatorname{deg}(V_{i+1})$$
degree of V_{i+1} in G_{i+1}

Apply Induction hypothesis:

$$|(S_{i,T_{i}})| + \frac{1}{2} \operatorname{deg}(V_{i+1}) \ge \frac{1}{2} \operatorname{OPT}(G_{i}) + \frac{1}{2} \operatorname{deg}(V_{i+1})$$

$$\ge \frac{1}{2} \left(\operatorname{OPT}(G_{i}) + \operatorname{deg}_{G_{i+1}}(V_{i+1}) \right) \ge \frac{1}{2} \operatorname{OPT}(G_{i+1})$$
best case if all of V_{i+1} 's
reighbors in some set

$$ALG = |(S_n, T_n)| \ge \frac{1}{2} OPT(G_n) = \frac{1}{2} OPT$$