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1 Introduction

This is a collection of selected lemmas, propositions and theorems in topology from the book In-
troduction to Topological Manifolds by John M. Lee[1]. Refer to this book for precise wording and
definitions.
Mouse over underlined text for a pop-up definition.
Some definitions that are not enumerated in the book have been included, these have been enu-
merated as 2.3X to indicate roughly where to find them in the textbook.

2 Topological Spaces

Topologies

2.8 Proposition. Let X be a topological space (A set X with a topology T ) and let A ⊆ X be
any subset. Then

a) A point is in Int(A) ⇔ it has a neighborhood contained in A.

b) A point is in Ext (A) ⇔ it has a neighborhood contained in X \A
c) A point is in ∂(A) ⇔ each of its neighborhood s contains both a point in A and a point

in X \A.
d) A point is in the closure of A, denoted A ⇔ each of its neighborhood s contains a point

of A.

e) A = A ∪ ∂A = Int(A) ∪ ∂(A)
f) Int(A) and Ext (A) are open in X. The closure of A and ∂A are closed in X.

g) The following are equivalent:

i) A is open in X.

ii) A =IntA

iii) A contains none of its boundary points.

iv) Every point of A has a neighborhood contained in A.

h) The following are equivalent:

i) A is closed in X.

ii) A = A

iii) A contains all of its boundary points.

iv) Every point of X\A has a neighborhood contained in X \A.

Definition. closed set
Definition. dense set

Convergence and Continuity

2.15 Proposition. A map between topological spaces is continuous if and only if the preimage of
every closed subset is closed.

2.17 Proposition. Let X,Y and Z be topological spaces.

a) Every constant map f : X → Y is continuous .
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A topology on X is a collection T of 'open sets' s.t.  0 and X are in T, arbitrary unions of open sets are in T and finite intersections of open sets are in T



The interior of a set A is the union of all set that are open in X and contained in A



A neighborhood of a point p is an open subset of X containing p.



The exterior of A, Ext(A) = X - the closure of A.



A neighborhood of a point p is an open subset of X containing p.



The Boundary of A = X - (Int(A) union Ext(A))



A neighborhood of a point p is an open subset of X containing p.



The closure of a set A is the intersection of all closed subsets of X that contain A.



A neighborhood of a point p is an open subset of X containing p.



The interior of a set A is the union of all set that are open in X and contained in A



The exterior of A, Ext(A) = X - the closure of A.



The closure of a set A is the intersection of all closed subsets of X that contain A.



The Boundary of A = X - (Int(A) union Ext(A))



The interior of a set A is the union of all set that are open in X and contained in A



A neighborhood of a point p is an open subset of X containing p.



A neighborhood of a point p is an open subset of X containing p.



A subset A of X is closed if its complement is open in X.



A set A is dense in X if the closure of A equals X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.
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b) The identity map IdX : X → X is continuous .

c) If f : X → Y is continuous , so is the restriction of f onto any open subset of X.

d) If f : X → Y and g : Y → Z are both continuous , then so is their composition
g ◦ f : X → Z

2.19 Proposition. (Local Criterion for Continuity) A map f : X → Y between topolog-
ical spaces is continuous if and only if each point of X has a neighborhood on which (the
restriction of) f is continuous .

2.30 Proposition. Suppose X and Y are topological space, and f : X → Y is any map.

a) f is continuous ⇔ f(A) ⊆ F (A) for all A ⊆ X.

b) f is closed ⇔ f(A) ⊇ f(A) for all A ⊆ X.

c) f is continuous ⇔ f−1(IntB) ⊆Int(f−1(B)) for all B ⊆ Y .

d) f is open ⇔ f−1(IntB) ⊇Int(f−1(B)) for all B ⊆ Y .

2.31 Proposition (Properties of Local Homeomorphisms).

a) Every homeomorphism is a local homeomorphism .

b) Every local homeomorphism is continuous and open .

c) Every bijective local homeomorphism is a homeomorphism .

Hausdorff Spaces

2.37 Proposition. Let X be a Hausdorff space.

a) Every finite subset of X is closed .

b) If a sequence (pi) in X converges to a limit p ∈ X, the limit is unique.

2.39 Suppose X is a Hausdorff space and A ⊆ X. If p ∈ X is a limit point of A, then every
neighborhood of p contains infinitely many points of A.

2.3X Definition: Basis A collection B of subsets of X is called a basis for the topology of X is
the following conditions hold

i) Every element of B is an open subset of X.

ii) Every open subset of X is the union of some collection of elements of B.

Bases and Countability

2.43 Proposition. Let X and Y be topological spaces and let B be a basis for Y . A map
f : X → Y is continuous if and only if for every basis subset B ∈ B, the subset f−1(B) is
open in X.

2.44 Proposition. Let X be a set, and suppose B is a collection of subsets of X. Then B is a
basis for some topology on X is and only if it satisfies the following conditions:

i) ∪B∈BB = X and

ii) if B1, B2 ∈ B and x ∈ B1 ∩B2 then ∃B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2.

If so, there is a unique topology on X for which B is a basis , called the topology generated
by B.
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A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A neighborhood of a point p is an open subset of X containing p.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X->Y is a closed map if every closed subset of X maps to a closed subset of Y.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



The interior of a set A is the union of all set that are open in X and contained in A



The interior of a set A is the union of all set that are open in X and contained in A



A map f:X->Y is an open map if every open subset of X maps to an open subset of Y.



The interior of a set A is the union of all set that are open in X and contained in A



The interior of a set A is the union of all set that are open in X and contained in A



A homeomorphism from X to Y is a bijective map f:X->Y s.t. both f and its inverse are continuous. If this map exists between X and Y, X and Y are homeomorphic



A map f:X->Y is a local homeomorphism if every point x in X has a neighborhood U s.t. f(U) is an open subset of Y and the restriction f:U->f(U) is a homeomorpism.



A map f:X->Y is a local homeomorphism if every point x in X has a neighborhood U s.t. f(U) is an open subset of Y and the restriction f:U->f(U) is a homeomorpism.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X->Y is an open map if every open subset of X maps to an open subset of Y.



A map f:X->Y is a local homeomorphism if every point x in X has a neighborhood U s.t. f(U) is an open subset of Y and the restriction f:U->f(U) is a homeomorpism.



A homeomorphism from X to Y is a bijective map f:X->Y s.t. both f and its inverse are continuous. If this map exists between X and Y, X and Y are homeomorphic



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



A subset A of X is closed if its complement is open in X.



A point p in A is called a limit point of A if every neighborhood of p contains a point in A other than itself.



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



A point p in A is called a limit point of A if every neighborhood of p contains a point in A other than itself.



A neighborhood of a point p is an open subset of X containing p.



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



A topology on X is a collection T of 'open sets' s.t.  0 and X are in T, arbitrary unions of open sets are in T and finite intersections of open sets are in T



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



G. Kamp Topology - Summary Chapter 2 2. Topological Spaces

Countability Properties

Four different countability properties, first countable , second countable , separable and Lindelöf .

2.47 Lemma (Nested Neighborhood Basis Lemma). Let X be a first countable space. For
every p ∈ X, there exists a nested neighborhood basis

2.48 Lemma (Sequence Lemma). Suppose X is a first countable space, A is any subset of X,
and x is any point in X

a) x ∈ A⇔ x is a limit point of a sequence of points in A.

b) x ∈IntA⇔ every sequence in X converging to x is eventually in A.

c) A is closed ⇔ A contains every limit of every convergent sequence of points in A.

d) A is open in X ⇔ every sequence in X converging to a point of A is eventually in A.

2.50 Theorem (Properties of Second Countable Spaces). Suppose X is a second count-
able space.

a) X is first countable .

b) X contains a countable dense subset.

c) Every open cover of X has a countable subcover .

2.5X Definition. separable space.

2.5X Definition. Lindelöf space.

Manifolds

2.5X Definition. locally Euclidean

2.52 Lemma. A topological space M is locally Euclidean of dimension n if either of the following
properties hold:

a) Every point of M has a neighborhood homeomorphic to an open ball in Rn

b) Every point of M has a neighborhood homeomorphic to Rn.

2.5X Definition. Manifold. An n-dimensional topological manifold is a second countable Haus-
dorff space that is locally Euclidean of dimension n.

2.53 Proposition. Every open subset of an n-manifold is an n-manifold .

2.55 Theorem (Invariance of Dimension). If m ̸= n, a nonempty topological space cannot be
both an m-manifold and an n-manifold .

2.56 Proposition. A separable metric space that is locally Euclidean of dimension n is an n-
manifold .

2.5X Definition. Closed n-dimensional upper half-space Hn ⊆ Rn

Hn = {(x1, x2, . . . , xn) ∈ Rn | xn ≥ 0}
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A space X is first countable if there exists a countable neighborhood basis at each point.



A topological space is second countable if it admits a countable basis for its topology.



A topological space X is separable if it contains a countable dense subset.



A topological space X is a Lindelöf space if every open cover of X has a countable subcover.



A space X is first countable if there exists a countable neighborhood basis at each point.



A sequence of neighborhoods (U(i)) of a point p is a nested neighborhood basis at p if U(i+1) is a subset of U(i) for every i, and every neighborhood of p contains U(i) for some i.



A space X is first countable if there exists a countable neighborhood basis at each point.



A point p in A is called a limit point of A if every neighborhood of p contains a point in A other than itself.



The interior of a set A is the union of all set that are open in X and contained in A



a sequence is eventually in A if x(i) is in A for all but finitely many x(i)



A subset A of X is closed if its complement is open in X.



A point p in A is called a limit point of A if every neighborhood of p contains a point in A other than itself.



a sequence is eventually in A if x(i) is in A for all but finitely many x(i)



A topological space is second countable if it admits a countable basis for its topology.



A topological space is second countable if it admits a countable basis for its topology.



A space X is first countable if there exists a countable neighborhood basis at each point.



A set A is dense in X if the closure of A equals X.



An (open/closed) cover of X is a collection U of (open/closed) subsets of X such that every point in X is in at least one of the sets of U.



A subcover is a subcollection U' of a cover U such that U' still covers X.



A topological space X is separable if it contains a countable dense subset.



A topological space X is a Lindelöf space if every open cover of X has a countable subcover.



A topological space M is locally Euclidean if every point of M has a neighborhood in M that is homeomorphic to an open subset of Rn.



A topological space M is locally Euclidean if every point of M has a neighborhood in M that is homeomorphic to an open subset of Rn.



A neighborhood of a point p is an open subset of X containing p.



A homeomorphism from X to Y is a bijective map f:X->Y s.t. both f and its inverse are continuous. If this map exists between X and Y, X and Y are homeomorphic



An open (unit) ball is a subset Bn of Rn of all vectors of length strictly less than some radius (unit ball, radius 1)



A neighborhood of a point p is an open subset of X containing p.



A homeomorphism from X to Y is a bijective map f:X->Y s.t. both f and its inverse are continuous. If this map exists between X and Y, X and Y are homeomorphic



A second countable Hausdorff space that is locally Euclidean of dimension n.



A topological space is second countable if it admits a countable basis for its topology.



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



A topological space M is locally Euclidean if every point of M has a neighborhood in M that is homeomorphic to an open subset of Rn.



A second countable Hausdorff space that is locally Euclidean of dimension n.



A second countable Hausdorff space that is locally Euclidean of dimension n.



A second countable Hausdorff space that is locally Euclidean of dimension n.



A second countable Hausdorff space that is locally Euclidean of dimension n.



A topological space X is separable if it contains a countable dense subset.



A topological space M is locally Euclidean if every point of M has a neighborhood in M that is homeomorphic to an open subset of Rn.



A second countable Hausdorff space that is locally Euclidean of dimension n.
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2.5X Definitions.
∂Hn = {(x1, . . . , xn) ∈ Rn | xn = 0}
IntHn = {(x1, . . . , xn) ∈ Rn | xn > 0}.
(U,ψ) is a coordinate chart for M
(U,ψ) is an interior chart if ψ(U) is an open subset of Rn (which includes the case in which
ψ(U) is an open subset of Hn).
(U,ψ) is a boundary chart if ψ(U) is an open subset of Hn with ψ(U) ∩ ∂Hn ̸= ∅

2.58 Proposition. If M is an n-dimensional manifold with boundary , then IntM is an open
subset of M , which itself is an n-dimensional manifold without boundary .

2.59 Theorem (Invariance of the Boundary). If M is a manifold with boundary , then a
point of M cannot be both a boundary point and an interior point. Thus ∂M and IntM are
disjoint subsets and ∂M ∪ IntM =M .

2.60 Corollary. IfM is a nonempty n-dimensional manifold with boundary , then ∂M is closed is
M and M is an n-manifold if and only if ∂M = ∅.

3 New Spaces From Old

3.5 Proposition. Suppose S is a subspace topology of the topological space X .

a) If U ⊆ S ⊆ X, and S is open in X, then U is open in X. The same is true with ”closed ”
instead of ”open”.

b) If U is a subset of S that is either open or closed in X, then it is also open or closed in
S, respectively.

3.8 Theorem (Characteristic Property of the Subspace Topology Suppose X is a topo-
logical space and S ⊆ X is a subspace. For any topological space Y , a map f : Y → S is

continuous ⇔ the composite map ıS ◦ f : Y → X is continuous:

X

Y S

ıS◦f

f

ıS

3.9 Corollary. If S is a subspace of the topological space X, the inclusion map ıS : S ↪→ X is
continuous .

3.10 Corollary. Let X and Y be topological spaces, f : X → Y is continuous . Then

a) Restricting the Domain: The restriction of f to any subspace S ⊆ X is continuous .

b) Restricting the Codomain: If T is a subspace of Y that contains f(X), then f :
X → T is continuous .

c) Expanding the Codomain: If Y is a subspace of Z, then f : X → Z is continuous .

3.11 Proposition. Suppose S is a subspace of the topological space X.

a) If R ⊆ S is a subspace of S, then R is a subspace of X. I.o.w. the subspace topologies
that R inherits from S and from X agree.
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The interior of a set A is the union of all set that are open in X and contained in A



If M is a manifold with a boundary, the coordinate chart is the pair (U, psi) where U is an open subset of M and psi is a homeomorphism from U to an open subset of either Rn or Hn (the closed upper half-space). U is called coordinate domain, psi is called a coordinate map.



(U, psi) is an interior chart if psi(U) is an open subset of Rn.



(U,psi) is a boundary chart if psi(U) is an open subset of Hn and the intersection between psi(U) and the boundary of Hn is non-empty.



A second countable Hausdorff space in which every point has a neighborhood homeomorphic to either Rn or Hn (the closed upper half-space)



The interior of a set A is the union of all set that are open in X and contained in A



The normal definition of a manifold, with emphasis on the possibility that the boundary might be empty.



A second countable Hausdorff space in which every point has a neighborhood homeomorphic to either Rn or Hn (the closed upper half-space)



A second countable Hausdorff space in which every point has a neighborhood homeomorphic to either Rn or Hn (the closed upper half-space)



A subset A of X is closed if its complement is open in X.



A second countable Hausdorff space that is locally Euclidean of dimension n.



Open sets of S defined as the intersection of an open set of X with a subset S of X



A subset A of X is closed if its complement is open in X.



A subset A of X is closed if its complement is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.
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b) If B is a basis for the topology of X, then

BS = {B ∩ S : B ∈ B}

is a basis for the topology on S.

c) If (pi) is a sequence of points in S and p ∈ S, then pi → p ∈ S if and only if pi → p ∈ X.

d) Every subspace of a Hausdorff space if Hausdorff .

e) Every subspace of a first countable space is first countable .

f) Every subspace of a second countable space is second countable .

3.16 Proposition. A continuous injective map that is either open or closed is a topological em-
bedding .

3.18 Proposition. A surjective topological embedding is a homeomorphism .

3.23 Lemma.(Gluing Lemma) Let X and Y be topological spaces, and let {Ai} be either an
arbitrary open cover of X, or a finite closed cover of X. Suppose that we are given continu-
ous maps fi : Ai → Y that agree on overlaps: fi|Ai∩Aj = fj |Ai∩Aj . Then there exists a unique
continuous map f : X → Y whose restriction to each Ai is equal to fi.

3.24 Theorem.(Uniqueness of the Subspace Topology) Suppose S is a subset of a topological
space X. The subspace topology on S is the unique topology for which the characteristic
property (3.8) holds.

Product Spaces

Suppose X1, X2, . . . , Xn are arbitrary topological spaces. On their Cartesian product X1×· · ·×Xn,
we define the product topology to be the topology generated by the basis

B = {U1 × · · · × Un : Ui is an open subset of Xi}

The topological space is called a product space, the basis subsets of the form Ui×· · ·×Un is called
product open subsets.

3.27 Theorem.(Characteristic Property of the Product Topology Suppose x1×· · ·×Xn is
a product space. For any topological space Y , a map fy → X1×· · ·×Xn is continuous if and
only if each of its component functions fi = πi◦f is continuous , where πi : X1×· · ·×Xn → Xi

is the canonical projection:

X1 × · · · ×Xn

Y Xi

f

fi

πi

3.28 Corollary. If x1, . . . , Xn are topological spaces, each canonical projection πi : X1 × · · · ×
Xn → Xi is continuous .

3.30 Theorem.(Uniqueness of the Product Topology.) LetX1, . . . , Xn be topological spaces.
The product topology X1 × · · · × Xn is the unique topology for which the characteristic
property (3.27) holds.

3.31 Proposition. Let X1, . . . , Xn be topological spaces.
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A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



A space X is first countable if there exists a countable neighborhood basis at each point.



A space X is first countable if there exists a countable neighborhood basis at each point.



A topological space is second countable if it admits a countable basis for its topology.



A topological space is second countable if it admits a countable basis for its topology.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X->Y is an open map if every open subset of X maps to an open subset of Y.



A map f:X->Y is a closed map if every closed subset of X maps to a closed subset of Y.



An injective continuous map that is a homeomorphism onto its image (in the subspace topology) is called a topological embedding.



An injective continuous map that is a homeomorphism onto its image (in the subspace topology) is called a topological embedding.



An injective continuous map that is a homeomorphism onto its image (in the subspace topology) is called a topological embedding.



A homeomorphism from X to Y is a bijective map f:X->Y s.t. both f and its inverse are continuous. If this map exists between X and Y, X and Y are homeomorphic



An (open/closed) cover of X is a collection U of (open/closed) subsets of X such that every point in X is in at least one of the sets of U.



An (open/closed) cover of X is a collection U of (open/closed) subsets of X such that every point in X is in at least one of the sets of U.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



Open sets of S defined as the intersection of an open set of X with a subset S of X



A topology on X is a collection T of 'open sets' s.t.  0 and X are in T, arbitrary unions of open sets are in T and finite intersections of open sets are in T



X1 x...x Xn topological spaces. The product topology is defined as the topology generated by the basis U1x...xUn: Ui is an open subset of Xi



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



X1 x...x Xn topological spaces. The product topology is defined as the topology generated by the basis U1x...xUn: Ui is an open subset of Xi
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a) The product topology is ”associative” in the sense that three topologies on the set X1×
X2×X3, obtained by thinking of it as X1×X2×X3, (X1×X2)×X3 or X1× (X2×X3)
are all equal.

b) For any i ∈ {1, . . . , n} and any point xj ∈ Xj , j ̸= i, the map f : X1 → X1 × · · · ×Xn

given by

f(x) = (x1, . . . , xi−1, x, xi+1, . . . xn)

is a topological embedding of Xi onto the product space.

c) Each canonical projection πi : X1 × · · · ×Xn → Xi is an open map.

d) If for each i, Bi is a basis for the topology on Xi, then the set

{B1 × · · · ×Bn : Bi ∈ Bi}

is a basis for the product topology on X1 × · · · ×Xn.

e)

References

[1] John M. Lee. Introduction to Topological Manifolds, volume 202 of Graduate Texts in Mathe-
matics. Springer, New York, NY, 2 edition, 2011.
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X1 x...x Xn topological spaces. The product topology is defined as the topology generated by the basis U1x...xUn: Ui is an open subset of Xi



An injective continuous map that is a homeomorphism onto its image (in the subspace topology) is called a topological embedding.



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



A topology on X is a collection T of 'open sets' s.t.  0 and X are in T, arbitrary unions of open sets are in T and finite intersections of open sets are in T



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



X1 x...x Xn topological spaces. The product topology is defined as the topology generated by the basis U1x...xUn: Ui is an open subset of Xi
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