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1 Introduction

This is a collection of selected lemmas, propositions and theorems in topology from the book In-
troduction to Topological Manifolds by John M. Lee[l]. Refer to this book for precise wording and
definitions.

Mouse over underlined text for a pop-up definition.

Some definitions that are not enumerated in the book have been included, these have been enu-
merated as 2.3X to indicate roughly where to find them in the textbook.

2 Topological Spaces

Topologies
2.8 Proposition. Let X be a topological space (A set X with a topology 7) and let A C X be
any subset. Then
a) A point is in Int(A) < it has a neighborhood contained in A.
b) A point is in Ext (A) < it has a neighborhood contained in X \ A

¢) A point is in 9(A) < each of its neighborhood s contains both a point in A and a point
in X\ A.

d) A point is in the closure of A, denoted A < each of its neighborhood s contains a point
of A.

e) A= AUJA =TInt(A)Ud(A)
f) Int(A) and Ext (A) are open in X. The closure of A and JA are closed in X.
g) The following are equivalent:
i) Ais open in X.
i) A =IntA
ii1) A contains none of its boundary points.
iv) Every point of A has a neighborhood contained in A.

h) The following are equivalent:
i) Ais closed in X.

i) A
iii) A contains all of its boundary points.
iv) Every point of X\ A has a neighborhood contained in X \ A.

Definition. closed set
Definition. dense set

Convergence and Continuity

2.15 Proposition. A map between topological spaces is continuous if and only if the preimage of
every closed subset is closed.

2.17 Proposition. Let X,Y and Z be topological spaces.

a) Every constant map f: X — Y is continuous .




A topology on X is a collection T of 'open sets' s.t.  0 and X are in T, arbitrary unions of open sets are in T and finite intersections of open sets are in T



The interior of a set A is the union of all set that are open in X and contained in A



A neighborhood of a point p is an open subset of X containing p.



The exterior of A, Ext(A) = X - the closure of A.



A neighborhood of a point p is an open subset of X containing p.



The Boundary of A = X - (Int(A) union Ext(A))



A neighborhood of a point p is an open subset of X containing p.



The closure of a set A is the intersection of all closed subsets of X that contain A.



A neighborhood of a point p is an open subset of X containing p.



The interior of a set A is the union of all set that are open in X and contained in A



The exterior of A, Ext(A) = X - the closure of A.



The closure of a set A is the intersection of all closed subsets of X that contain A.



The Boundary of A = X - (Int(A) union Ext(A))



The interior of a set A is the union of all set that are open in X and contained in A



A neighborhood of a point p is an open subset of X containing p.



A neighborhood of a point p is an open subset of X containing p.



A subset A of X is closed if its complement is open in X.



A set A is dense in X if the closure of A equals X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.
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b) The identity map Idx : X — X is continuous .

c) If f: X — Y is continuous , so is the restriction of f onto any open subset of X.

d)If f: X — Y and g : Y — Z are both continuous , then so is their composition
gof: X—=2Z7

2.19 Proposition. (Local Criterion for Continuity) A map f : X — Y between topolog-
ical spaces is continuous if and only if each point of X has a neighborhood on which (the
restriction of) f is continuous .

2.30 Proposition. Suppose X and Y are topological space, and f : X — Y is any map.

a) f is continuous < f(A) C F(A) for all A C X.

b) fis closed & f(A) D f(A) for all A C X.

¢) f is continuous < f~1(IntB) CInt(f~(B)) for all BC Y.
)

d) fisopen < f~1(IntB) DInt(f~(B)) for all BC Y.
2.31 Proposition (Properties of Local Homeomorphisms).

a) Every homeomorphism is a local homeomorphism .
b) Every local homeomorphism is continuous and open .

c¢) Every bijective local homeomorphism is a homeomorphism .

Hausdorff Spaces
2.37 Proposition. Let X be a Hausdorff space.

a) Every finite subset of X is closed .

b) If a sequence (p;) in X converges to a limit p € X, the limit is unique.

2.39 Suppose X is a Hausdorff space and A C X. If p € X is a limit point of A, then every
neighborhood of p contains infinitely many points of A.

2.3X Definition: Basis A collection &£ of subsets of X is called a basis for the topology of X is
the following conditions hold

i) Every element of & is an open subset of X.

ii) Every open subset of X is the union of some collection of elements of 4.

Bases and Countability

2.43 Proposition. Let X and Y be topological spaces and let % be a basis for Y. A map
f: X — Y is continuous if and only if for every basis subset B € 4, the subset f~!(B) is
open in X.

2.44 Proposition. Let X be a set, and suppose % is a collection of subsets of X. Then £ is a
basis for some topology on X is and only if it satisfies the following conditions:
i) UpegB = X and
ii) if By, By € & and x € By N By then B3 € A such that x € By C By N Bo.

If so, there is a unique topology on X for which £ is a basis , called the topology generated
by A.




A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A neighborhood of a point p is an open subset of X containing p.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X->Y is a closed map if every closed subset of X maps to a closed subset of Y.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



The interior of a set A is the union of all set that are open in X and contained in A



The interior of a set A is the union of all set that are open in X and contained in A



A map f:X->Y is an open map if every open subset of X maps to an open subset of Y.



The interior of a set A is the union of all set that are open in X and contained in A



The interior of a set A is the union of all set that are open in X and contained in A



A homeomorphism from X to Y is a bijective map f:X->Y s.t. both f and its inverse are continuous. If this map exists between X and Y, X and Y are homeomorphic



A map f:X->Y is a local homeomorphism if every point x in X has a neighborhood U s.t. f(U) is an open subset of Y and the restriction f:U->f(U) is a homeomorpism.



A map f:X->Y is a local homeomorphism if every point x in X has a neighborhood U s.t. f(U) is an open subset of Y and the restriction f:U->f(U) is a homeomorpism.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X->Y is an open map if every open subset of X maps to an open subset of Y.



A map f:X->Y is a local homeomorphism if every point x in X has a neighborhood U s.t. f(U) is an open subset of Y and the restriction f:U->f(U) is a homeomorpism.



A homeomorphism from X to Y is a bijective map f:X->Y s.t. both f and its inverse are continuous. If this map exists between X and Y, X and Y are homeomorphic



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



A subset A of X is closed if its complement is open in X.



A point p in A is called a limit point of A if every neighborhood of p contains a point in A other than itself.



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



A point p in A is called a limit point of A if every neighborhood of p contains a point in A other than itself.



A neighborhood of a point p is an open subset of X containing p.



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



A topology on X is a collection T of 'open sets' s.t.  0 and X are in T, arbitrary unions of open sets are in T and finite intersections of open sets are in T



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.
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Countability Properties

Four different countability properties, first countable , second countable , separable and Lindelof .

2.47

2.48

2.50

Lemma (Nested Neighborhood Basis Lemma). Let X be a first countable space. For
every p € X, there exists a nested neighborhood basis

Lemma (Sequence Lemma). Suppose X is a first countable space, A is any subset of X,
and x is any point in X

a) * € A< 1z is a limit point of a sequence of points in A.

b) x €lntA < every sequence in X converging to z is eventually in A.
)
)

c) A is closed < A contains every limit of every convergent sequence of points in A.

d

A is open in X < every sequence in X converging to a point of A is eventually in A.

Theorem (Properties of Second Countable Spaces). Suppose X is a second count-
able space.

a) X is first countable .

b) X contains a countable dense subset.

c) Every open cover of X has a countable subcover .

2.5X Definition. separable space.
2.5X Definition. Lindel6f space.
Manifolds
2.5X Definition. locally Euclidean
2.52 Lemma. A topological space M is locally Euclidean of dimension n if either of the following
properties hold:
a) Every point of M has a neighborhood homeomorphic to an open ball in R”
b) Every point of M has a neighborhood homeomorphic to R™.
2.5X Definition. Manifold. An n-dimensional topological manifold is a second countable Haus-
dorff space that is locally Euclidean of dimension n.
2.53 Proposition. Every open subset of an n-manifold is an n-manifold .
2.55 Theorem (Invariance of Dimension). If m # n, a nonempty topological space cannot be
both an m-manifold and an n-manifold .
2.56 Proposition. A separable metric space that is locally Euclidean of dimension n is an n-
manifold .
2.5X Definition. Closed n-dimensional upper half-space H" C R"

H" = {(z1,22,...,2,) €ER" |z, > 0}




A space X is first countable if there exists a countable neighborhood basis at each point.



A topological space is second countable if it admits a countable basis for its topology.



A topological space X is separable if it contains a countable dense subset.



A topological space X is a Lindelöf space if every open cover of X has a countable subcover.



A space X is first countable if there exists a countable neighborhood basis at each point.



A sequence of neighborhoods (U(i)) of a point p is a nested neighborhood basis at p if U(i+1) is a subset of U(i) for every i, and every neighborhood of p contains U(i) for some i.



A space X is first countable if there exists a countable neighborhood basis at each point.



A point p in A is called a limit point of A if every neighborhood of p contains a point in A other than itself.



The interior of a set A is the union of all set that are open in X and contained in A



a sequence is eventually in A if x(i) is in A for all but finitely many x(i)



A subset A of X is closed if its complement is open in X.



A point p in A is called a limit point of A if every neighborhood of p contains a point in A other than itself.



a sequence is eventually in A if x(i) is in A for all but finitely many x(i)



A topological space is second countable if it admits a countable basis for its topology.



A topological space is second countable if it admits a countable basis for its topology.



A space X is first countable if there exists a countable neighborhood basis at each point.



A set A is dense in X if the closure of A equals X.



An (open/closed) cover of X is a collection U of (open/closed) subsets of X such that every point in X is in at least one of the sets of U.



A subcover is a subcollection U' of a cover U such that U' still covers X.



A topological space X is separable if it contains a countable dense subset.



A topological space X is a Lindelöf space if every open cover of X has a countable subcover.



A topological space M is locally Euclidean if every point of M has a neighborhood in M that is homeomorphic to an open subset of Rn.



A topological space M is locally Euclidean if every point of M has a neighborhood in M that is homeomorphic to an open subset of Rn.



A neighborhood of a point p is an open subset of X containing p.



A homeomorphism from X to Y is a bijective map f:X->Y s.t. both f and its inverse are continuous. If this map exists between X and Y, X and Y are homeomorphic



An open (unit) ball is a subset Bn of Rn of all vectors of length strictly less than some radius (unit ball, radius 1)



A neighborhood of a point p is an open subset of X containing p.



A homeomorphism from X to Y is a bijective map f:X->Y s.t. both f and its inverse are continuous. If this map exists between X and Y, X and Y are homeomorphic



A second countable Hausdorff space that is locally Euclidean of dimension n.



A topological space is second countable if it admits a countable basis for its topology.



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



A topological space M is locally Euclidean if every point of M has a neighborhood in M that is homeomorphic to an open subset of Rn.



A second countable Hausdorff space that is locally Euclidean of dimension n.



A second countable Hausdorff space that is locally Euclidean of dimension n.



A second countable Hausdorff space that is locally Euclidean of dimension n.



A second countable Hausdorff space that is locally Euclidean of dimension n.



A topological space X is separable if it contains a countable dense subset.



A topological space M is locally Euclidean if every point of M has a neighborhood in M that is homeomorphic to an open subset of Rn.



A second countable Hausdorff space that is locally Euclidean of dimension n.
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2.5X

2.58

2.59

2.60

Definitions.

OH" = {(z1,...,2,) € R" | z,, = 0}

IntH" = {(z1,...,2,) € R™ | 2,, > 0}.

(U,) is a coordinate chart for M

(U,%) is an interior chart if ¢)(U) is an open subset of R™ (which includes the case in which
¥ (U) is an open subset of H").

(U, ) is a boundary chart if ¢)(U) is an open subset of H" with ¢ (U) N OH"™ # ()

Proposition. If M is an n-dimensional manifold with boundary , then IntM is an open
subset of M, which itself is an n-dimensional manifold without boundary .

Theorem (Invariance of the Boundary). If M is a manifold with boundary , then a
point of M cannot be both a boundary point and an interior point. Thus M and Int M are
disjoint subsets and OM UInt M = M.

Corollary. If M is a nonempty n-dimensional manifold with boundary , then OM is closed is
M and M is an n-manifold if and only if OM = (.

3 New Spaces From Old

3.5

3.8

3.9

3.10

3.11

Proposition. Suppose S is a subspace topology of the topological space X .
a) IfU C S C X, and S is open in X, then U is open in X. The same is true with ”closed ”
instead of ”open”.
b) If U is a subset of S that is either open or closed in X, then it is also open or closed in

S, respectively.

Theorem (Characteristic Property of the Subspace Topology Suppose X is a topo-

logical space and S C X is a subspace. For any topological space Y, amap f:Y — S is
X

continuous < the composite map 1igo f : Y — X is continuous: ISV [ls

YT>S

Corollary. If S is a subspace of the topological space X, the inclusion map 15 : S — X is
continuous .

Corollary. Let X and Y be topological spaces, f: X — Y is continuous . Then

a) RESTRICTING THE DOMAIN: The restriction of f to any subspace S C X is continuous .

b) RESTRICTING THE CODOMAIN: If T' is a subspace of Y that contains f(X), then f :
X — T is continuous .

c¢) EXPANDING THE CODOMAIN: If Y is a subspace of Z, then f: X — Z is continuous .
Proposition. Suppose S is a subspace of the topological space X.

a) If R C S is a subspace of S, then R is a subspace of X. L.o.w. the subspace topologies
that R inherits from S and from X agree.




The interior of a set A is the union of all set that are open in X and contained in A



If M is a manifold with a boundary, the coordinate chart is the pair (U, psi) where U is an open subset of M and psi is a homeomorphism from U to an open subset of either Rn or Hn (the closed upper half-space). U is called coordinate domain, psi is called a coordinate map.



(U, psi) is an interior chart if psi(U) is an open subset of Rn.



(U,psi) is a boundary chart if psi(U) is an open subset of Hn and the intersection between psi(U) and the boundary of Hn is non-empty.



A second countable Hausdorff space in which every point has a neighborhood homeomorphic to either Rn or Hn (the closed upper half-space)



The interior of a set A is the union of all set that are open in X and contained in A



The normal definition of a manifold, with emphasis on the possibility that the boundary might be empty.



A second countable Hausdorff space in which every point has a neighborhood homeomorphic to either Rn or Hn (the closed upper half-space)



A second countable Hausdorff space in which every point has a neighborhood homeomorphic to either Rn or Hn (the closed upper half-space)



A subset A of X is closed if its complement is open in X.



A second countable Hausdorff space that is locally Euclidean of dimension n.



Open sets of S defined as the intersection of an open set of X with a subset S of X



A subset A of X is closed if its complement is open in X.



A subset A of X is closed if its complement is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.
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b) If A is a basis for the topology of X, then
PBs={BNS:BecA}

is a basis for the topology on S.

c) If (p;) is a sequence of points in S and p € S, then p; — p € S if and only if p; — p € X.

o

Every subspace of a Hausdorff space if Hausdorff .

Every subspace of a first countable space is first countable .

¢

)
)
)
)

f) Every subspace of a second countable space is second countable .

3.16 Proposition. A continuous injective map that is either open or closed is a topological em-

bedding .
3.18 Proposition. A surjective topological embedding is a homeomorphism .

3.23 Lemma.(Gluing Lemma) Let X and Y be topological spaces, and let {A4;} be either an
arbitrary open cover of X, or a finite closed cover of X. Suppose that we are given continu-
ous maps f; : A; — Y that agree on overlaps: fi|4,na; = fjla;n4,. Then there exists a unique
continuous map f : X — Y whose restriction to each A; is equal to f;.

3.24 Theorem.(Uniqueness of the Subspace Topology) Suppose S is a subset of a topological
space X. The subspace topology on S is the unique topology for which the characteristic
property (3.8) holds.

Product Spaces

Suppose X1, Xo,..., X, are arbitrary topological spaces. On their Cartesian product X x - - - x X,
we define the product topology to be the topology generated by the basis

B ={U; x ---x U, : U is an open subset of X;}

The topological space is called a product space, the basis subsets of the form U; x - - - x U, is called
product open subsets.

3.27 Theorem.(Characteristic Property of the Product Topology Suppose x1 X - - - x X, is
a product space. For any topological space Y, a map f, — X7 x ---x X, is continuous if and
only if each of its component functions f; = m;0 f is continuous , where 7; : X1 x---xX,, = X;

X1 X - x X,
is the canonical projection: Tm-
f
Y — X;
3.28 Corollary. If z1,...,X,, are topological spaces, each canonical projection m; : X1 X -+ X

X, — X; is continuous .

3.30 Theorem.(Uniqueness of the Product Topology.) Let X1, ..., X, be topological spaces.
The product topology X7 X --- x X,, is the unique topology for which the characteristic
property (3.27) holds.

3.31 Proposition. Let X1,..., X, be topological spaces.




A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



X is Hausdorff if for any distinct points p, q in X, there exists disjoint neighborhoods of p and q respectively



A space X is first countable if there exists a countable neighborhood basis at each point.



A space X is first countable if there exists a countable neighborhood basis at each point.



A topological space is second countable if it admits a countable basis for its topology.



A topological space is second countable if it admits a countable basis for its topology.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X->Y is an open map if every open subset of X maps to an open subset of Y.



A map f:X->Y is a closed map if every closed subset of X maps to a closed subset of Y.



An injective continuous map that is a homeomorphism onto its image (in the subspace topology) is called a topological embedding.



An injective continuous map that is a homeomorphism onto its image (in the subspace topology) is called a topological embedding.



An injective continuous map that is a homeomorphism onto its image (in the subspace topology) is called a topological embedding.



A homeomorphism from X to Y is a bijective map f:X->Y s.t. both f and its inverse are continuous. If this map exists between X and Y, X and Y are homeomorphic



An (open/closed) cover of X is a collection U of (open/closed) subsets of X such that every point in X is in at least one of the sets of U.



An (open/closed) cover of X is a collection U of (open/closed) subsets of X such that every point in X is in at least one of the sets of U.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



Open sets of S defined as the intersection of an open set of X with a subset S of X



A topology on X is a collection T of 'open sets' s.t.  0 and X are in T, arbitrary unions of open sets are in T and finite intersections of open sets are in T



X1 x...x Xn topological spaces. The product topology is defined as the topology generated by the basis U1x...xUn: Ui is an open subset of Xi



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



A map f:X -> Y is continuous iff for any open subset of Y its preimage is open in X.



X1 x...x Xn topological spaces. The product topology is defined as the topology generated by the basis U1x...xUn: Ui is an open subset of Xi
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a) The product topology is ”associative” in the sense that three topologies on the set X x
X9 X X3, obtained by thinking of it as X7 x X3 x X3, (X7 x X2) x X3 or X7 X (X2 X X3)
are all equal.

b) For any i € {1,...,n} and any point z; € X;, j # 4, themap f: X; — X; x--- x X,
given by

f(l‘) = (CCl, ey Lj—1, Ly Tj4-15 - - _’pn)

is a topological embedding of X; onto the product space.
c¢) Each canonical projection 7; : X1 x -+ x X, — X, is an open map.

d) If for each i, %; is a basis for the topology on X;, then the set
{Bl X-"XBnZBiGe%Z‘}
is a basis for the product topology on X; x --- x X,,.
e)
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X1 x...x Xn topological spaces. The product topology is defined as the topology generated by the basis U1x...xUn: Ui is an open subset of Xi



An injective continuous map that is a homeomorphism onto its image (in the subspace topology) is called a topological embedding.



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



A topology on X is a collection T of 'open sets' s.t.  0 and X are in T, arbitrary unions of open sets are in T and finite intersections of open sets are in T



A basis B of X is a collection of subsets of X such that (1) every element of B is an open subset of X, and (2) every open subset of X is a union of elements of B.



X1 x...x Xn topological spaces. The product topology is defined as the topology generated by the basis U1x...xUn: Ui is an open subset of Xi
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