
Pell’s equation and continued fractions
Two mathematical gems

Torbjörn Tambour

Department of Mathematics, Stockholm University

Linnæus University
March 12, 2014

Torbjörn Tambour Pell’s equation and continued fractions



Pell’s equation

Pell’s equation is the Diophantine equation

x2 − dy2 = 1,

where d is an integer ≥ 2.

If d is a square, then the only solutions are (±1, 0). Hence we
assume that d is not a square.
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Pell’s equation

Why is Pell’s equation interesting?

1 Because of its connection with the group of units in the ring
of algebraic integers in the quadratic number field Q(

√
d).

2 Because of its connection with approximation of real numbers
with rationals. If x2 − dy2 = 1, then∣∣∣∣√d − x

y

∣∣∣∣ < 1

Cy2

for some constant C ≥ 2 independent of x and y .
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Pell’s equation

The equation is named after the English mathematician John Pell
(1610-1685), who had nothing to do with it. It was Euler who by
mistake attributed a solution method to Pell. The equation has a
long and rich history.
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Pell’s equation

One solution to x2 − 2y2 = 1 is (x , y) = (3, 2). Define xn, yn by

(3 + 2
√

2)n = xn + yn

√
2.

Then (±xn,±yn) are also solutions and in fact they are all
solutions to the equation.
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Pell’s equation

Define an automorhism

Q(
√

d) → Q(
√

d)

ξ = a + b
√

d 7→ ξ′ = a− b
√

d .

and put N(ξ) = ξξ′ (cf. complex conjugation and absolute value).

Then (ξη)′ = ξ′η′ and N(ξη) = N(ξ)N(η). If ξ = a + b
√

d , then

N(ξ) = ξξ′ = a2 − db2.

The map N is called the norm.

The solutions to Pell’s equation correspond to the elements of
Z[
√

d ] with norm 1.
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Pell’s equation

Let us say that the number a + b
√

d is a solution to x2 − dy2 = 1
if a2 − db2 = 1. From N(ξη) = N(ξ)N(η) follows

Theorem

The solutions to Pell’s equation x2 − dy2 = 1 form a group Pd

under multiplication.

Since (±1, 0) are solutions (the trivial ones), Pd is not empty. But
does it always contain non-trivial elements? And in that case, what
is its structure?

Torbjörn Tambour Pell’s equation and continued fractions



Pell’s equation

Theorem (Lagrange 1768)

Pell’s equation always has non-trivial solutions. There is a smallest
solution a + b

√
d > 1 such that all solutions can be written

±(a + b
√

d)n for n ∈ Z. Hence Pd is isomorphic to Z2 × Z.

The second part of the theorem is easy to prove. One can give a
short but non-constructive proof of the existence of non-trivial
solutions using the pidgeon hole principle, but we will later use
continued fractions to prove this.

The smallest solution a + b
√

d > 1 is called the fundamental
solution to x2 − dy2 = 1.
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Pell’s equation

d Fundamental solution

2 3 + 2
√

2

3 2 +
√

3

5 9 + 4
√

5

6 5 + 2
√

6

7 8 + 3
√

7

10 19 + 6
√

10

11 10 + 3
√

11

13 649 + 180
√

13
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Pell’s equation

Now things get considerably more interesting:

d Fundamental solution

29 9801 + 1820
√

29

61 226153980 + 1766319049
√

61

94 2143295 + 221064
√

94
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Pell’s equation

The obvious question is:

How do we find the fundamental solution?

The not so obvious answer is:

By using continued fractions.
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Continued fractions

Using the division algorithm repeatedly gives

87

38
= 2 +

11

38
= 2 +

1

38/11
= 2 +

1

3 + 5/11

= 2 +
1

3 +
1

11/5

= 2 +
1

3 +
1

2 +
1

5

(cf. Euclid’s algorithm). The last expression is the continued
fraction expansion of 87/38. We denote it by [2, 3, 2, 5].
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Continued fractions

Another example:

137

44
= 3 +

5

44
= 3 +

1

44/5
= 3 +

1

8 + 4/5

= 3 +
1

8 +
1

5/4

= 3 +
1

8 +
1

1 +
1

4
= [3, 8, 1, 4]
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Continued fractions

And yet another:

[2, 10, 5, 7, 6] =

[
2, 10, 5, 7 +

1

6

]
=

[
2, 10, 5,

43

6

]

=

[
2, 10, 5 +

6

43

]
=

[
2, 10,

221

43

]

=

[
2, 10 +

43

221

]
=

[
2,

2253

221

]
= 2 +

221

2253

=
4727

2253

Torbjörn Tambour Pell’s equation and continued fractions



Continued fractions

The continued fraction expansion of an irrational number:

√
2 + 1 = 2 +

(√
2− 1

)
= 2 +

1
√

2 + 1

= 2 +
1

2 +
1

√
2 + 1

= 2 +
1

2 +
1

2 +
1

√
2 + 1

We would like to write
√

2 + 1 = [2, 2, 2, . . .], but what does this
mean?
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Continued fractions

Clearly the continued fraction expansion of a (positive real)
number terminates if and only if the number is rational.

For an arbitrary (irrational) number A define the positive integers
ai (a0 might be 0) and the real numbers ξi > 1 by

A = a0 +
1

ξ1
= a0 +

1

a1 +
1

ξ2

= a0 +
1

a1 +
1

a2 +
1

ξ3

= . . .
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Continued fractions

Hence we have
A = [a0, a1, . . . an, ξn+1].

Terminology:

An = [a0, a1, . . . an] are called convergents

ξn are called complete quotients

in the continued fraction expansion of A.
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Continued fractions

Theorem

We have
lim

n→∞
An = A

and
A2k < A, A2k+1 > A for all k.

If An = pn/qn, where pn and qn are coprime integers, then

|A− An| <
1

an+1q2
n

for all n.

We write
A = [a0, a1, a2, . . .]

and call this the continued fraction expansion of A.
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Continued fractions

On the other hand:

Theorem

Let A > 0 be an irrational number and p and q coprime integers
such that ∣∣∣∣A− p

q

∣∣∣∣ < 1

2q2
.

Then p/q is a convergent in the continued fraction expansion of A.
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Continued fractions

We saw earlier that

√
2 + 1 = [2, 2, 2, . . .] = [2].

Let
α = [1, 1, 1, . . .] = [1].

Then

α = [1, α] = 1 +
1

α
,

which gives

α =

√
5 + 1

2
.
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Continued fractions

Let
β = [3, 1, 3, 1, 3, 1, . . .] = [3, 1].

Then

β = [3, 1, β] =

[
3, 1 +

1

β

]
=

[
3,
β + 1

β

]
= 3 +

β

β + 1
=

4β + 3

β + 1
,

which gives

β =

√
21 + 3

2
.
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Continued fractions

Theorem

The number α has a continued fraction expansion of the form

α = [b0, b1, . . . , bm, a0, a1, . . . , an]

if and only if it is a quadratic irrationality, i.e. a root of an
irreducible equation of the form Ax2 + Bx + C = 0.

An expansion of this form is said to be ultimately periodic.
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Continued fractions

Let [α] denote the integer part of α.

Theorem

The continued fraction expansion of a quadratic irrationality of the
form

A =
√

d + [
√

d ]

is purely periodic, i.e.

A = [a0, a1, . . . , an].
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Continued fractions

√
7 + 2 = 4 + (

√
7− 2) =

[
4,

1√
7− 2

]
=

[
4,

√
7 + 2

3

]

=

[
4, 1 +

√
7− 1

3

]
=

[
4, 1,

3√
7− 1

]
=

[
4, 1,

√
7 + 1

2

]

=

[
4, 1, 1 +

√
7− 1

2

]
=

[
4, 1, 1,

2√
7− 1

]

=

[
4, 1, 1,

√
7 + 1

3

]
=

[
4, 1, 1, 1 +

√
7− 2

3

]

=

[
4, 1, 1, 1,

3√
7− 2

]
=
[
4, 1, 1, 1,

√
7 + 2

]
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Continued fractions

Let D = [
√

d ] and assume that A = D +
√

d = [a0, a1, . . . , an].
Then a0 = 2D and we write

A = [D, a1, a2, . . . , an, 2D].

Define pk , qk by

A1 = [D, a1, a2, . . . , an] =
p1

q1

A2 = [D, a1, a2, . . . , an, 2D, a1, a2, . . . , an] =
p2

q2

and so on. Then it can be shown that

p2
k − dq2

k = (−1)k(n+1).

The proof is elementary, but a bit too long to discuss here. We see
the connection to Pell’s equation.

Torbjörn Tambour Pell’s equation and continued fractions



Pell’s equation and continued fractions

We get the solutions to Pell’s equation x2 − dy2 = 1 as follows.

n odd, n + 1 even: p1 + q1

√
d is the fundamental solution

n even, n + 1 odd: p2 + q2

√
d is the fundamental solution and

p1, q1 is a solution to x2 − dy2 = −1
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Pell’s equation and continued fractions

x2 − 2y2 = 1

√
2 + 1 = [2],

√
2 = [1, 2], n = 0

p1

q1
= [1] = 1, p1 = q1 = 1

so 1 +
√

2 is a solution to x2 − 2y2 = −1

p2

q2
= [1, 2] =

3

2
, p2 = 3, q2 = 2

so the fundamental solution to x2 − 2y2 = 1 is 3 + 2
√

2
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Pell’s equation and continued fractions

x2 − 7y2 = 1

√
7 + 2 = [4, 1, 1, 1],

√
7 = [2, 1, 1, 1, 4], n = 3

p1

q1
= [2, 1, 1, 1] =

8

3

so the fundamental solution to x2 − 7y2 = 1 is 8 + 3
√

7
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Pell’s equation and continued fractions

x2 − 13y2 = 1

√
13 + 3 = [6, 1, 1, 1, 1],

√
13 = [3, 1, 1, 1, 1, 6], n = 4

p1

q1
= [3, 1, 1, 1, 1] =

18

5

so 18 + 5
√

13 is a solution to x2 − 13y2 = −1

The fundamental solution to x2 − 13y2 = 1

is (18 + 5
√

13)2 = 649 + 180
√

13.
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Pell’s equation and continued fractions

x2 − 94y2 = 1

√
94 + 9 = [18, 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1], n = 15

p1

q1
= [9, 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1] =

2143295

221064

so the fundamental solution to x2 − 94y2 = 1 is

2143295 + 221064
√

94
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Archimedes’ cattle problem

In 1773 Lessing published a manuscript from the Wolfenbüttel
library containing a problem that is nowadays attributed to
Archimedes. The problem asks for the number of white, black,
dappled and brown bulls and cows belonging to the Sun god
Helios. An analysis of the problem reveals that it is necessary to
solve the Pell equation x2 − dy2 = 1 for

d = 410 286 423 278 424.

A solution was given by the German mathematician A. Amthor in
1880, but he didn’t directly apply the continued fraction method. It
has been shown that the period in the expansion of

√
d has length

203 254 and that the fundamental solution has 206 545 digits.

Torbjörn Tambour Pell’s equation and continued fractions



Historical remarks

Brahmagupta, 7th century: With the help of one solution one can
generate infinitely many new ones.

Javadena, Bhaskara, 11th century: Method to find one solution,
probably involving continued fractions.

Fermat: The first European mathematician to study Pell’s
equation. For special values of d (e.g. d = 61) he gave it as a
challenge to colleagues.

Euler: Systematic analysis of Pell’s equation using continued
fractions.
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Historical remarks

e − 1 = [1, 1, 2, 1, 1, 4, 1, 1, 6, . . .]

π =

[3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, . . .]

Some convergents in the expansion of π:

A0 = 3, A1 =
22

7
, A2 =

333

106
, A3 =

355

113
, A4 =

103993

33102
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