STOCKHOLMS UNIVERSITET

Matematiska institutionen Peter LeFanu Lumsdaine Exam / Tentamen MM7022 Logik II, 7,5 hp HT 2023 Fri, 2023-12-15

This exam consists of 6 questions, worth a total of 40 points. Not all questions are equally difficult. You may submit your answers in either English or Swedish. Write clearly and justify your answers appropriately.

Good luck! − *Lycka till!*

- 1. (4p) Recall that ordinal addition $\alpha + \beta$, multiplication $\alpha \cdot \beta$, and exponentiation α^{β} are each defined by induction on the second argument β . Which of the following identities are valid for all ordinals α , β , γ ? For each, prove or give a counterexample.
 - (a) $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$
 - (b) $\alpha^{\beta \cdot \gamma} = (\alpha^{\beta})^{\gamma}$
 - (c) $(\alpha \cdot \beta)^{\gamma} = \alpha^{\gamma} \cdot \beta^{\gamma}$
- 2. (6p) For each of the following sets, determine whether its cardinality is equal to $\|\mathbb{R}\|$, or strictly greater, or strictly less.
 - (a) $\mathbb{R}^{<\omega}$, the set of all finite sequences of reals;
 - (b) Bij(\mathbb{R} , \mathbb{R}), the set of all bijections $\mathbb{R} \to \mathbb{R}$;
 - (c) Mon(\mathbb{N}, \mathbb{N}), the set of all monotone functions (\mathbb{N}, \leq) \to (\mathbb{N}, \leq).
- 3. (9p) Equivalents of the axiom of choice.
 - (a) State the three main equivalent forms of the axiom choice: AC itself, Zorn's lemma, and the well-ordering principle (WOP).

The *principle of cardinal comparability* (PCC) states that for any sets X and Y, either there exists some injection from X to Y, or some injection from Y to X. In class, we proved PCC from WOP.

- (b) Prove PCC directly from Zorn's lemma.
- (c) Prove that PCC implies one of AC, Zorn, or WOP (and so is equivalent to AC). (Hint: There are many possible approaches here. Hartogs' lemma may be helpful.)
- 4. (7p) Let \mathcal{L}_G be the language consisting of a single binary predicate symbol, \sim . An \mathcal{L}_G structure (i.e. a set G together with a binary relation \sim) is called a *directed graph*, or *digraph*.

A cycle of length n in a digraph (G, \sim) (for $n \ge 1$) is a sequence $x_1, \ldots, x_n \in G$, such that $x_i \sim x_{i+1}$ for each $1 \le i < n$, and $x_n \sim x_1$. A digraph is cycle-free if it contains no cycles.

- (a) Show that the class of cycle-free digraphs is axiomatisable.
- (b) Show that the class of digraphs containing a cycle is not axiomatisable.
- (c) Show that the class of cycle-free digraphs is not finitely axiomatisable.

- 5. (5p) We can generalise the μ -operator of recursive functions as follows: For any (possibly partial) function $f: \mathbb{N}^{p+1} \to \mathbb{N}$, and any $k \geq 1$, take $\mu^k y$. $[f(\vec{x}, y) = 0]$ to be defined as follows:
 - $(\mu^k y. [f(\vec{x}, y) = 0]) = n$ just if $f(\vec{x}, y)$ is defined for all $y \le n$, $f(\vec{x}, n) = 0$, and there are precisely k values of y with $0 \le y < n$ such that $f(\vec{x}, y) = 0$;
 - $(\mu^k y. [f(\vec{x}, y) = 0])$ is undefined if there is no such n.

Show that if $f: \mathbb{N}^{p+1} \to \mathbb{N}$ is recursive, then the function $g: \mathbb{N}^{1+p} \to \mathbb{N}$ defined by $g(k, \vec{x}) = \mu^k y$. $[f(\vec{x}, y) = 0]$ is again recursive.

- 6. (9p) Gödel's first incompleteness theorem tells us that no recursively enumerable theory extending Robinson arithmetic P_0 can be complete and consistent. Show, however, that any three of these four properties can coexist: give theories of arithmetic which are...
 - (a) ... complete, recursively enumerable, and extending P_0 , but not consistent;
 - (b) ... consistent, recursively enumerable, and extending P_0 , but not complete;
 - (c) ... complete, consistent, and extending P_0 , but not recursively enumerable;
 - (d) ... complete, consistent, and recursively enumerable, but not an extension of P_0 .

In each case, justify why the three claimed properties hold. (Failure of the fourth property then follows by the incompleteness theorem.)

--- End of exam - Slut på provet ---