1. Homework "DA7065 Computational Biology"

Exercises that are not marked with \star are for all participants. Exercises marked with \star are intended as additional challenges for PhD students. However, all students are welcome to attempt solving \star-exercises to earn extra points.

Exercise 1: $\quad 2.5+5+2.5=10 \mathrm{p}$
Consider a gene as a subsequence of the DNA that encodes one protein and let S be a the protein (sequence of aminoacids) CRICK encoded by a " 15 -letter gene" g in a strand of DNA.
(a) Which aminoacids are encoded?
(b) How many different genes g can theoretically code for this sequence S ?
(c) Write down one possible gene g encoding S.

Exercise 2: 7.5p

Recall the Nirenberg-Matthaei-Experiment: We introduced the technique of transcribing synthetic mRNA in order to solve some of the genetic code. The synthetic mRNA was periodic in nature: $X X X X \ldots$, $X X Y X X Y \ldots, X Y Y X Y Y \ldots$, etc. Derive all the information you can about the genetic code using only two letters A and C. Clearly define the synthetic mRNA and their protein products.

Exercise 3: 2.5+2.5+2.5=7.5p
Given are the following "Illumina" photos in order $1,2, \ldots, 5$ showing the colored-glowing terminators.

(a) Determine the set ζ of reads you can determine based on the given photos.
(b) Draw the overlap graph for ζ (omit edges with weight 0).
(c) Apply the algorithm Greedy_SCP with input ζ and provide for each execution-step the resulting set ζ as well as the final superstring.

Exercise 4: 5p

Let $E=\left\{\left(S_{1}, S_{2}\right),\left(S_{1}, S_{3}\right),\left(S_{1}, S_{4}\right),\left(S_{2}, S_{5}\right),\left(S_{3}, S_{5}\right),\left(S_{4}, S_{5}\right)\right\}$ be the edge set of the overlap graph $G=$ ($\left.\left\{S_{1}, \ldots, S_{5}\right\}, E, \operatorname{ov}(),\right)$, where edges with weight 0 are omitted.
Find sequences S_{1}, \ldots, S_{5} that give rise to this graph - the particular weights you come up with are not important.

Exercise 5: $\quad 5+5=10$ p
Given is the sequence $S=$ AATGATAGGCAGCCAC.
(a) Draw the DeBruijn-graph G_{k} for $k=3$.
(b) Determine all sequence reconstructions consistent with the Eulerian paths in G.

Exercise 6 ${ }^{\star}$: 10p
Let X, Y, Z and Z^{\prime} be distinct strings s.t. the set $\left\{X, Y, Z, Z^{\prime}\right\}$ is substring-free.
Prove the following statement:

$$
\text { If } \operatorname{ov}(X, Y) \geq \max \left\{\operatorname{ov}(X, Z), \operatorname{ov}\left(Z^{\prime}, Y\right)\right\}, \text { then } \operatorname{ov}(X, Y)+\operatorname{ov}\left(Z^{\prime}, Z\right) \geq \operatorname{ov}(X, Z)+\operatorname{ov}\left(Z^{\prime}, Y\right) .
$$

Exercise 7*: 5p

Let us consider a protein simply as a sequence of aminoacids. Consider the set R of all DNA sequences of length $3 n$ with $n \in \mathbb{N}$. Let $R^{\prime} \subseteq R$ be the set of sequences $r \in R$ that can theoretically code for proteins. In particular, assume that each sequence $r=r_{1} r_{2} \ldots r_{3 n} \in R^{\prime}$ begins with the startcodon coding for Met, ends with one of the three stopcodons and none of the codons $r_{i} r_{i+1} r_{i+2}$ with $i \bmod 3=1$ and $3<i<3 n-2$ corresponds to a start- or stopcodon.

Determine the cardinality $\left|R^{\prime}\right|$ for $n=1, n=2$ and $n \neq 3$.

Deadline: Friday - Feb 2

