# 1. Homework "DA7065 Computational Biology"

Exercises that are not marked with  $\star$  are for all participants. Exercises marked with  $\star$  are intended as additional challenges for PhD students. However, all students are welcome to attempt solving  $\star$ -exercises to earn extra points.

#### **Exercise 1:** 2.5+5+2.5 = 10p

Consider a gene as a subsequence of the DNA that encodes one protein and let S be a the protein (sequence of aminoacids) CRICK encoded by a "15-letter gene" g in a strand of DNA.

- (a) Which aminoacids are encoded?
- (b) How many different genes g can theoretically code for this sequence S?
- (c) Write down one possible gene g encoding S.

# Exercise 2: 7.5p

Recall the *Nirenberg-Matthaei-Experiment*: We introduced the technique of transcribing synthetic mRNA in order to solve some of the genetic code. The synthetic mRNA was periodic in nature: XXXX..., XXYXXY..., XYYXYY..., etc. Derive all the information you can about the genetic code using only two letters A and C. Clearly define the synthetic mRNA and their protein products.

#### **Exercise 3:** 2.5+2.5+2.5=7.5p

Given are the following "Illumina" photos in order  $1, 2, \dots, 5$  showing the colored-glowing terminators.



- (a) Determine the set  $\zeta$  of reads you can determine based on the given photos.
- (b) Draw the overlap graph for  $\zeta$  (omit edges with weight 0).
- (c) Apply the algorithm Greedy\_SCP with input  $\zeta$  and provide for each execution-step the resulting set  $\zeta$  as well as the final superstring.

### Exercise 4: 5p

Let  $E = \{(S_1, S_2), (S_1, S_3), (S_1, S_4), (S_2, S_5), (S_3, S_5), (S_4, S_5)\}$  be the edge set of the overlap graph  $G = (\{S_1, \dots, S_5\}, E, \text{ov}(,))$ , where edges with weight 0 are omitted.

Find sequences  $S_1, \ldots, S_5$  that give rise to this graph - the particular weights you come up with are not important.

# **Exercise 5:** 5+5=10p

Given is the sequence  $S = \mathtt{AATGATAGGCAGCCAC}$ .

- (a) Draw the DeBruijn-graph  $G_k$  for k=3.
- (b) Determine all sequence reconstructions consistent with the Eulerian paths in G.

#### $\star$ -exercises

# Exercise $6^*$ : 10p

Let X, Y, Z and Z' be distinct strings s.t. the set  $\{X, Y, Z, Z'\}$  is substring-free. Prove the following statement:

If 
$$\operatorname{ov}(X,Y) \ge \max\{\operatorname{ov}(X,Z),\operatorname{ov}(Z',Y)\}$$
, then  $\operatorname{ov}(X,Y) + \operatorname{ov}(Z',Z) \ge \operatorname{ov}(X,Z) + \operatorname{ov}(Z',Y)$ .

# Exercise $7^*$ : 5p

Let us consider a protein simply as a sequence of aminoacids. Consider the set R of all DNA sequences of length 3n with  $n \in \mathbb{N}$ . Let  $R' \subseteq R$  be the set of sequences  $r \in R$  that can theoretically code for proteins. In particular, assume that each sequence  $r = r_1 r_2 \dots r_{3n} \in R'$  begins with the startcodon coding for Met, ends with one of the three stopcodons and none of the codons  $r_i r_{i+1} r_{i+2}$  with  $i \mod 3 = 1$  and 3 < i < 3n-2 corresponds to a start- or stopcodon.

Determine the cardinality |R'| for n = 1, n = 2 and  $n \neq 3$ .

Deadline: Friday - Feb 2