Some Comments on Sets

A comment on a notation (a, b). It is unfortunate that this notation is firmly established in mathematics with two entirely different meanings. One is the ordered pair and the other is the set of all numbers x such that $a<x<b$. Most of time this conflict of notation will not cause difficulty because the meaning will be clear from the context. However there are situations where confusion is possible, In this case we use the symbol $a \times b$ for ordered pair.
Some words on image and preimage of function $f: A \rightarrow B$. If A_{0} is a subset of A, B_{0} is a subset of B.

Image of $A_{0}: f\left(A_{0}\right)=\left\{b: b=f(a)\right.$ for at least one $\left.a \in A_{0}\right\}$
Preimage of $B_{0}: f^{-1}\left(B_{0}\right)=\left\{a: f(a) \in B_{0}\right\}$
Note that

1. $f^{-1}\left(B_{0}\right)$ can be empty.
2. if f is bijective, we have two meanings for the notation $f^{-1}\left(B_{0}\right)$: (i) it is the premiere of B_{0}; (ii) it is the image of the function $f^{-1}: B \rightarrow A$. The two meanings give precisely the same subset of A.
3. The operation f^{-1} applied to subsets of B behaves nicely; it preserves inclusions, unions, interceptions, and differences of sets. We use this fact frequently. But the operation f applied to subsets of A preserves only inclusions and unions. More precisely, assuming $A_{i} \subset A$ and $B_{i} \subset B$ for $i=0,1$:
(a) $B_{0} \subset B_{1} \Rightarrow f^{-1}\left(B_{0}\right) \subset f^{-1}\left(B_{1}\right)$
(b) $f^{-1}\left(B_{0} \cup B_{1}\right)=f^{-1}\left(B_{0}\right) \cup f^{-1}\left(B_{1}\right)$
(c) $f^{-1}\left(B_{0} \cap B_{1}\right)=f^{-1}\left(B_{0}\right) \cap f^{-1}\left(B_{1}\right)$
(d) $f^{-1}\left(B_{0}-B_{1}\right)=f^{-1}\left(B_{0}\right)-f^{-1}\left(B_{1}\right)$
(e) $A_{0} \subset A_{1} \Rightarrow f\left(A_{0}\right) \subset f\left(A_{1}\right)$.
(f) $f\left(A_{0} \cup A_{1}\right)=f\left(A_{0}\right) \cup f\left(A_{1}\right)$
(g) $f\left(A_{0} \cap A_{1}\right)=f\left(A_{0}\right) \cap f\left(A_{1}\right)$; the equality holds if f is injective
(h) $f\left(A_{0}-A_{1}\right) \supset f\left(A_{0}\right)-f\left(A_{1}\right)$; the equality holds if f is injective
4. In general $f^{-1}\left(f\left(A_{0}\right)\right)=A_{0}$ and $f\left(f^{-1}\left(B_{0}\right)\right)=B_{0}$ are not true. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=3 x^{2}+2$. Let $[a, b]$ denote the closed interval $a \leq x \leq b$. Then

$$
\left.f^{-1}(f([0,1]))=f^{-1}([2,5])=[-1,1] \text { and } f\left(f^{-1}(0,5]\right)\right)=f([-1,1])=[2,5]
$$

But if $f: A \rightarrow B$ and if $A_{0} \subset A$ and $B_{0} \subset B$, then

$$
A_{0} \subset f^{-1}\left(f\left(A_{0}\right)\right)
$$

the equality holds if f is injective, and

$$
f\left(f^{-1}\left(B_{0}\right)\right) \subset B_{0}
$$

the equality holds if f is surjective.

