
Solutions of the second exam:
Stochastic Processes and Simulation II

August 15th 2023

Exercise 1: Poisson processes

(i) Give the definition of a compound Poisson process tXptq, t ě 0u with parameter λ and
distribution F . Write an expression for its mean ErXptqs and its variance VarpXptqq.

Solution: A stochastic process tXptq, t ě 0u is said to be a compound Poisson process with
parameter λ and distribution F if it can be represented as

Xptq “

Nptq
ÿ

i“1

Yi, t ě 0,

where tNptq, t ě 0u is a Poisson process with rate λ, and tYi, i ě 1u is a family of independent
random variables with distribution F that is also independent of tNptq, t ě 0u. We have that
ErXptqs “ λtErY1s and VarpXptqq “ λtErY 2

1 s.

One of the many consequences of the climate crisis is the increasing number of wildfires
occurring over the summer in Southern European countries such as Portugal, Spain, Italy
and Greece. As global temperatures rise, the hot and dry conditions help these fires catch
and spread, and it is expected that their size, frequency and severity will increase in the
coming years, with extreme wildfires devastating communities and ecosystems.
Assume that in Spain wildfires occur over the summer according to a Poisson process with
a rate of λS “ 2 per week. Suppose also that each time a wildfire occurs, nearby villages
are evacuated and people are relocated, and that the number of relocated people NS has
distribution FS given by

P pNS “ 100q “ 1{4, P pNS “ 300q “ 1{2, P pNS “ 500q “ 1{4,

independently for each wildfire.

(ii) Let Sptq be the total number of relocated people due to wildfires in Spain over the sum-
mer. What type of process is tSptq, t ě 0u? Calculate the expected value and variance in a
summer month, i.e., calculate ErSp4qs and VarpSp4qq, where we approximate 1 month « 4
weeks.

Solution: The process tSptq, t ě 0u is a compound Poisson process with parameter λS “ 2 and
distribution FS. We have that ErNSs “ 300 and ErN2

Ss “ 1002 1
4
` 3002 1

2
` 5002 1

4
“ 110000.

Hence, using point (i) above, ErSp4qs “ 2¨4¨300 “ 2400 and VarpSp4qq “ 2¨4¨110000 “ 880000.

(iii) Assume that in Portugal wildfires occur over the summer according to a Poisson process
with rate λP per week and that the number of relocated people NP has distribution FP ,
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independently for each wildfire. Assume also that wildfires in Portugal occur independently
from wildfires in Spain. Let P ptq be the total number of relocated people due to wildfires
in Portugal over the summer. What type of process is tSptq ` P ptq, t ě 0u? What is its
parameter and its distribution, in terms of λS, λP , FS, FP ?

Solution: Note that the process tP ptq, t ě 0u is a compound Poisson process with parameter
λP and distribution FP . The sum tSptq ` P ptq, t ě 0u of the two independent compound
Poisson processes is a compound Poisson process with paramenter λS ` λP and distribution
F “ λS

λS`λP
FS `

λP
λS`λP

FP .

Exercise 2: Renewal theory

(i) Let tNptq, t ě 0u be a renewal process with i.i.d. interarrival times Xn, n ě 1. Let
µ “ ErXns and let mptq “ ErNptqs be the renewal function. The elementary renewal theorem

states that mptq
t
Ñ 1

µ
as tÑ 8. Prove the lower bound, i.e., that limtÑ8

mptq
t
ě 1

µ
.

Solution: Consider the time SNptq`1 of the first renewal after t. Note that Nptq ` 1 is a
stopping time, since Nptq ` 1 “ n ô Nptq “ n ´ 1 ô X1 ` ¨ ¨ ¨Xn´1 ď t,X1 ` ¨ ¨ ¨Xn ą t.
Then, ErSNptq`1s “ ErX1 ` ¨ ¨ ¨ ` XNptq`1s “ ErXsErNptq ` 1s “ µpmptq ` 1q. Define the
excess time as Y ptq “ SNptq`1 ´ t. Taking expectations and rearranging the terms, we get
µpmptq ` 1q “ t` ErY ptqs, which implies

mptq

t
“

1

µ
`

ErY ptqs
tµ

´
1

t
ě

1

µ
´

1

t
Ñ

1

µ
.

(ii) Let tNptq, t ě 0u be as above and consider a renewal reward process tRptq “
řNptq
n“1 Rn, t ě

0u where Rn, n ě 1 are i.i.d. and represent the rewards earned each time a renewal occurs.

State and prove the reward theorem for Rptq
t

.

Solution: The renewal reward theorem says that, if the expected reward in a cycle ErRs
and the expected cycle length ErXs are finite, then Rptq

t
Ñ

ErRs
ErXs almost surely as t Ñ 8.

To prove it, write Rptq
t
“

řNptq
n“1 Rn

t
“

řNptq
n“1 Rn

Nptq
Nptq
t
. Then, by the strong low of large numbers,

řNptq
n“1 Rn

Nptq
Ñ ErRs a.s., and the rate of the renewal process Nptq

t
Ñ 1

ErXs a.s..

Suppose that each time a wildfire occurs a relocation center is installed nearby in order to help
people evacuate and move to the nearest city. Assume that people arrive at the relocation
center according to a Poisson process with a rate of 10 per hour, and that, as soon as there
are 30 people, a bus picks them all up and departs. The bus service association incurs a cost
at a rate of 4k euros per unit time whenever there are k people waiting at the relocation center.

(iii) Describe the problem in terms of a renewal reward process. What is the expected length
of a cycle? What is the expected cost in a cycle? Use the renewal reward theorem to compute
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the long-run average cost.

Solution: We can model the problem as a renewal reward process where the renewals/cycles
are described by the arrivals of buses and the reward is a cost which is paid gradually through
a cycle at a rate of 4n per unit time. The expected time between two arrivals is 1

10
, hence

the length of a cycle is ErXs “ 30
10
“ 3 hours. The expected cost up to the arrival of the

first person is 0. The expected cost between the first and the second arrival is 4
10

, and in
general the expected cost between the k-th and the pk ` 1q-st arrival is 4k

10
. Hence we have

that ErRs “
ř29
k“0

4k
10
“ 4

10
29¨30
2
“ 174 euros. By the renewal reward theorem, the long-run

average cost is given by ErRs
ErXs “

174
3
“ 58 euros.

Exercise 3: Queueing theory

Assume that when people arrive at the relocation center they first have to go to a registration
room to identify themselves. Assume they arrive at a Poisson rate λ independently of each
other and they form a single queue for two registration desks: one is always active, while the
other one is active if and only if there are at least 3 people in the registration room. Assume
that the time it takes at each desk is exponentially distributed with mean 1{µ, independently
of everything else.

(i) Specify what type of queueing model best describes the registration process. What condi-
tion must λ and µ satisfy in order for the number of people not to grow beyond all bounds?

Solution: The registration process can be described as a variation of an M{M{2 queueing
model, where the second server is operating only when there are at least 3 people in the
system. The arrival times are i.i.d. Exppλq and the service times are i.i.d. Exppµq. The neces-
sary condition in order for the number of people not to grow beyond all bounds is that λ ă 2µ.

(ii) Write down the balance equations for the above queueing system.

Solution: Let πn be the asymptotic probability that there are n people in the registration
room. The balance equations are

λπ0 “ µπ1

pλ` µqπ1 “ λπ0 ` µπ2,

pλ` µqπ2 “ λπ1 ` 2µπ3,

pλ` 2µqπn “ λπn´1 ` 2µπn`1, n ě 3.

(iii) Let µR be the average number of people in the registration room. What is the asymptotic
average time that a person spends in the registration room? What is the asymptotic average
time that a person spends in queue in the registration room?
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Solution: We know that µR “ L “ λW , where W is the average time a person spends in the
registration room. Hence, W “

µR
λ

. Moreover, the average time a person spends in service is
1
µ
, so the average time a person spends in the queue is WQ “ W ´ 1

µ
“

µR
λ
´ 1

µ
.

Exercise 4: Simulation

(i) Assume that wildfires in Spain occur over the summer according to a Poisson process
tWSptq, t ě 0u with rate λS “ 2. Describe how we can simulate this process by simulating
only standard uniform random variables.

Solution: We can simulate the standard Poisson process with rate 2 by simulating the sequence
of exponentially distributed arrival times X1, X2, . . . . We can simulate standard uniform ran-
dom variables U1, U2, . . . , and use the inverse transformation method setting Xi “ ´

logpUiq

2
.

Assume that in Italy wildfires occur over the summer according to a nonhomogeneous Poisson
process tWIptq, t ě 0u with intensity function λIptq “

1
t`3

.

(ii) In Italy, given that a wildfire occurs at time x, compute the density function fxptq of the
time at which the next wildfire occurs.

Solution: We have that

Fxptq “ P pnext arrival in px, x` tq | arrival at xq

“ 1´ P pno arrivals in px, x` tq | arrival at xq

“ 1´ P pno arrivals in px, x` tqq

“ 1´ e´
şt
0 λIpx`yq dy

“ 1´ e´
şt
0

1
x`y`3

dy

“ 1´ e´ logpx`t`3
x`3 q

“ 1´
x` 3

x` t` 3

“
t

x` t` 3
.

Hence by differentiating we get fxptq “
x`3

px`t`3q2
.

(iii) Describe how we can simulate the occurrence of wildfires over the summer in Italy by
simulating only standard uniform random variables.

Solution: We can simulate the nonhomogeneous Poisson process with intensity function 1
t`3

by simulating the event times in the order in which they occur. Using point (ii), we can
simulate the time of the first event Y1 from the distribution F0. If Y1 “ y1, then we simulate
Y2 by adding y1 to a value simulated from Fy1 . If Y2 “ y2, then we simulate Y3 by adding
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y2 to a value simulated from Fy2 , and so on. In particular, Fxptq “
t

x`t`3
, hence using the

inverse transformation method with

F´1x puq “ px` 3q
u

1´ u
,

we can simulate the successive event times Y1, Y2, . . . by simulating standard uniform random
variables U 11, U

1
2, . . . and then setting

Y1 “ F´10 pU 11q “
3U 11

1´ U 11
,

Y2 “ Y1 ` F
´1
Y1
pU 12q “ Y1 ` pY1 ` 3q

U 12
1´ U 12

,

Yi “ Yi´1 ` F
´1
Yi´1
pU 1iq “ Yi´1 ` pYi´1 ` 3q

U 1i
1´ U 1i

, i ě 3.

(iv) Bonus (2 points): how can we simulate the time of the first wildfire that occurs either
in Spain or Italy?

Solution: We can simulate the time X1 of the first wildfire in Spain and the time Y1 of the first
wildfire in Italy, following the methods described in points (i) and (iii) respectively. Then,
minpX1, Y1q gives the time of the first event in the superposition of the two Poisson processes.

Exercise 5: Brownian motion

(i) Give the definition of a Brownian motion tXptq, t ě 0u with drift coefficient µ and variance

parameter σ2. Show that Xptq
t
Ñ µ almost surely as tÑ 8.

Solution: The process tXptq, t ě 0u is a Brownian motion with drift coefficient µ and vari-
ance parameter σ2 if Xp0q “ 0, tXptq, t ě 0u has stationary and independent increments,
and Xptq „ N pµt, σ2tq. Alternatively, if tBptq, t ě 0u is a standard Brownian motion and
µ P R, then the process tXptq “ σBptq ` µt, t ě 0u is a Brownian motion with drift µ and

variance parameter σ2. Since σBptq
t

„ N p0, σ2{tq, and its variance converges to 0, we have

that σBptq
t
Ñ 0 in probability and almost surely. Hence we have that Xptq

t
“

σBptq
t
` µ Ñ µ

almost surely as tÑ 8.

Wildfires in Southern Europe are expected to increase in the coming years, due to global
warming and temperature rise. Indeed, we know that in 2023 the global temperature has
increased by 1.1 degrees Celsius compared with pre-industrial levels, and it is predicted to
keep increasing in the next decades.

(ii) Assume that the global temperature evolves according to a Brownian motion with drift
and that exactly in 2035 it will be 1.5 degrees Celsius higher compared with pre-industrial
levels. What is the value of the drift coefficient µ in the unit Celsius/years? In which year it
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is expected to reach the 2 degrees Celsius threshold?

Solution: The process is expected to increase by 0.4 degrees Celcius in 12 years from now,
so the drift coefficient must be µ “ 0.4

12
“ 1

30
. To reach the 2 degrees Celsius threshold, it

needs to further increase by 0.5 degrees Celcius after 2035, which is expected to happen in
0.5
µ
“ 0.5

1{30
“ 15 years, hence in 2050.

Assume that we will be able to find solutions to the climate crisis and manage to half the
effect of the drift in the year 2035 and to completely cancel it in the year 2041, so that the
global temperature will evolve according to a Brownian motion with drift µ until 2035, then
with drift µ{2 until 2041, and then without drift.

(iii) If in 2041 the global temperature will be exactly at its mean value and if σ “ 1, what is
the probability that it will not reach the 2 degrees Celsius threshold by 2050?

Solution: We know that in 2035 the global temperature will be 1.5 degrees Celcius warmer
than pre-industrial times. Moreover, we know that it will evolve according to a Brownian
motion with drift µ{2 “ 1{60 for the following 6 years until 2041, so it is expected to increase
by 6 1

60
“ 0.1 degrees Celsius and to reach level 1.6 degrees Celsius warmer than pre-industrial

times. It will then evolve according to a standard Brownian motion without drift. Note that
the probability of not hitting the threshold of 2 degrees Celsius before 2050 is equivalent to
the probability that a standard Brownian motion tX̄ptq, t ě 0u starting at 0 takes longer than
9 years to increase by 0.4 degrees Celsius. Recall that, if we let Ta “ inftt ě 0 : X̄ptq ě au be
the hitting time of barrier a, then PpTa ą tq “ 1´ 2?

2π

ş8

a{
?
t
e´y

2{2 dy. Hence, we have that

PpT0.4 ą 9q “ 1´
2
?

2π

ż 8

0.4{
?
9

e´y
2{2 dy “ 1´

2
?

2π

ż 8

0.4{3

e´y
2{2 dy.
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