
Computer Assignment MT5012 VT2023
Hand in: Monday, May 22, 23:59

The computer assignment consists of three simulation topics covered in the
lectures. You can work on the exercises in pairs and use any resources you need
to solve them, including Chat-GPT. However, ensure that the report is written
in your own words.

For each task, provide a clear explanation of your approach. Additionally, make
sure that the code you submit is readable. Please note that unreadable code will
not be graded.

If you have any questions you can reach me at: taariq.nazar@math.su.se.

Monte-Carlo integration
Extra resources:

• Monte Carlo Simulation & Importance Sampling link (12:45 min)

Note: These videos are not necessary to complete this part of the assignment.
However, I find them very helpful for building an understanding of these concepts.

Crude Monte-Carlo integration aims at numerically approximate an expecta-
tion/integral E[h(X)] =

∫
h(x)fX(x) dx by

1. Simulate a realisation X
2. Compute h(X)
3. Repeat the above two steps a large number of times and return the average

computed h

The law of large numbers ensures convergence and given finite variance Var(h(X))
we can also us the central limit theorem to approximate the error involved.
According to the latter, the magnitude of approximation error will decrease at
the rate N−1/2, which is painfully slow. In comparison to many other numerical
integration techniques, it does however have the advantage of not depending
directly on dimensionality of X. Another advantage is that fX need not be
analytically available as long as we can simulate from it.

As a basic example, we can approximate an integral on the unit interval using that∫ 1
0 h(x) dx = E[h(X)] if X is uniformly distributed on [0, 1]. Let h(x) = sin(x),

we can simulate by the following algorithm

X = uniform(N) # Draw N uniform random variables
h = sin(X) # Evaluate
mean(h) # Sample mean
[Result]: 0.4614475

which is reasonably close to the true value 1 − cos(1) = 0.4596977.

1

https://www.youtube.com/watch?v=C3p2wI4RAi8

Importance sampling
Importance sampling generalises crude Monte Carlo by writing

E[h(X)] =
∫

h(x)fX(x) dx =
∫

h(x)fX(x)fY (x)
fY (x) dx = E

[h(Y)fX(Y)
fY (Y)

]
= E[h(Y)w(Y)],

which is valid as long as fY (x) > 0 for all x such that fX(x) > 0 (the property
of absolute continuity) and where w(Y) = fX (Y)

fY (Y) . The expression is then
approximated by simulating from Y and averaging simulated h(y)w(y).

There are two main arguments for this construction:

• The random variable/vector Y may be easier to simulate than X,
• the variance Var((h(Y)w(Y)) may be much smaller than Var(h(X)), lead-

ing to a smaller Monte-Carlo error.

The name of the method refers to applications of the latter; say we want to
approximate P (X > a) =

∫
1(x > a)fX(x) dx for a value a far out in the tail

of fX . If we proceed by simulating X1, . . . , XN from fX , and take the average
of 1(Xi > a), we will be spending most of our simulation budget on a region
that is unimportant; in this case where the integrand 1(x > a)fX(x) equals zero.
We would like to spend more effort on the important region x > a in order to
increase efficiency/decrease variance.

For illustration, we consider the problem of approximating the probability of a
rare event p = P (X > 10) when X has a standard exponential distribution. Of
course, Monte Carlo is not needed here since P (X > 10) = exp(−10) = 0.000045.
First, the crude Monte-Carlo gives the following based on 10000 draws:

X = Exponential(N, rate=1) # Draw N samples from standard exponential.
h = (X > 10) # 1 if sample is > 10 else 0
mean(h) # Average
[Results]: 0

Not a single draw was larger than 10 and the approximation returned is 0. While
this is “close” to the true value in an absolute sense, when approximating rare
events the relative error is more relevant (i.e. we are concerned whether the
probability is 10−5 or 10−10, not just that it is close to zero). Hence we want

p̂

p
− 1

rather than p − p̂ to be small.

Using importance sampling, we may replace the standard exponential with a
distribution that is more likely to excess 10.

Task 1: Implement an importance sampler with Y ∼ Exponential(1/10)
and compute the relative error. Graph the convergence and a 95%
confidence interval of the estimate w.r.t the number of samples with
and without importance sampling.

2

https://en.wikipedia.org/wiki/Absolute_continuity#Absolute_continuity_of_measures

General procedure:

1. Generate samples for Y .
2. Evaluate h(Y).
3. Evaluate w(Y).
4. Estimate E[h(Y)w(Y)].

Task 2: An “optimal” importance sampling distribution for the above
problem is Y = X + 10, a standard exponential shifted to the right.
Try it. In what sense is it “optimal”?

Default of an insurance company
Consider an insurance company that starts with capital C at year t = 0. Each
year, it gains p > 0 in premiums and loses X ∼ F independently of other years.
Its capital at the end of year t is thus

Zt = C + tp −
t∑

i=1
Xi.

What is the probability of default within the next T years? Defaulting can be
interpreted as not being able to pay for the losses. That is, Zt < 0. Therefore,
we can write the probability of default as

P (min
0<t≤T

Zt < 0) = E(1(min
0<t≤T

Zt < 0)).

Which in plain words is: What is the probability that the the insurance company
will have negative capital for any one of the years t ∈ [1, T].

Approximating this probability can be done by crude Monte-Carlo as follows:

1. Generate an outcome(sample) h(Z):

1. Simulate the losses, X = (X1, . . . , XT).
2. Compute the capital, Z = (Z1, . . . , ZT) using X.
3. Evaluate if the insurance company has defaulted given the simulated

outcome, h(Z) = 1(min0<t≤T Zt < 0).

2. Average over multiple outcomes of h(Z).

Task 3: Approximate the probability of default using the following
parameters; T = 20, C = 15, p = 1 and loss-distributions independent
LogNormal(0, 1/4).

Again this will be inefficient if the probability of default is very small. A
simple importance sampling alternative is to replace Xi ∼ LogNormal(0, 1/4)
by Yi ∼ LogNormal(µ, 1/4), where the aim is to increase the probability of
default (but not make it too close to 1).

3

Task 4: Approximate the probability of default using the same pa-
rameters as in previous task, using importance sampling described
above. Choose a suitable µ and report what values are appropriate.

Markov chain Monte Carlo
Extra resources:

• Markov Chain Monte Carlo link (12:10 min)
• Metropolis-Hastings link (18:14 min)
• Gibbs Sampling link (8:48 min)

Note: These videos are not necessary to complete this part of the assignment.
However, I find them very helpful for building an understanding of these concepts.

Simulating directly from a given distribution X ∼ P can be difficult, in particular
when the dimension of X is high. It turns out to be relatively straightforward to
simulate a Markov chain which has P as its stationary distribution though. Less
straightforward is to do it in an efficient way! Again we want to approximate
E[h(X)] based on random draws X1, . . . , XN . This time however

• X1, . . . , XN form a Markov chain, hence they will in general not be inde-
pendent

• Xi is only guaranteed to have the same distribution as X in the limit.

Due to dependence, variance of h̄ is now

Var(n−1
N∑

i=1
h(Xi)) = n−2

∑
i=1

Var(h(Xi)) + n−2
∑
i̸=j

Cov(h(Xi), h(Xj)),

where the first term will be approximately n−1 Var(h(Xn)) as for the independent
case. For a Markov chain with strong serial dependence, the second term will
dominate the Monte carlo error/variance.

Gibbs sampling
Gibbs sampling is a Markov Chain Monte Carlo (MCMC) algorithm that is
used to generate samples from a joint probability distribution by iteratively
sampling from the conditional distributions of each variable, given the values of
all other variables. This sampling method is particularly useful when the joint
distribution is complex and is difficult to directly sample from. Which is typical
when the joint distribution has a large number of variables.

To familiarise yourself with this method you will start off by looking at the
simplest case. Which is sampling from a multivariate normal correlated variables.

Let (X1, X2) follow a bivariate Normal distribution with mean µ = (0, 0) and

4

https://www.youtube.com/watch?v=yApmR-c_hKU
https://www.youtube.com/watch?v=yCv2N7wGDCw
https://www.youtube.com/watch?v=7LB1VHp4tLE

covariance matrix
Σ =

(
1 ρ
ρ 1

)
Task 5: Derive the conditional distributions X1|X2 = x2 and X2|X1 = x1.

Task 6: Implement a Gibbs sampler that samples from the bivariate
distribution described above. Let ρ = 0.8. Does the Monte Carlo
variance depend on ρ? Conclusions?.

The 2D Ising model
The square lattice ising model is a classical model in statistical physics describing
interacting magnetic spins. It defines a probability distribution on a k ×k matrix
σ(state of the system), with entries σij ∈ {−1, 1}2, where i, j ∈ Jk = {1, . . . , k}2,
defined by

πσ = Cβ exp
(
−β

∑
i∼j

σiσj

)
where the sum is over all neighbours. We say that a pair are neighbours if they
are separated by a distance of 1 in the horizontal or vertical direction. For
instance (1, 1) and (1, 2) are neighbours but (1, 1) and (2, 2) are not. It can be
shown that

p(σi = 1|{σj ; j ̸= i}) = 1/(1 + exp(2β
∑

j:i∼j

σj)),

note that this does not depend on the hard-to-compute normalising constant
Cβ . Where the sum is over all neighbours.

Task 7: Use Gibbs sampling to simulate the system described above.
Present a visualisation of the state dynamics(over time). Let β = 10.

Note that this method is computationally demanding for large values of k, try it
with a small value (e.g. k = 10) first and then increase if computer power allows.

Task 8: Simulate and visualise the Ising model for positive and negative
values of β and report the result.

Task 9: Note that by symmetry, P (σij = 1) = P (σij = −1) = 1/2.
Simulate a long chain (with a modest k) and β = 10. What is the
proportion of values of, say, σ(2,2) that equals 1? Conclusion?

5

A single server queue
A single-server queuing system is completely determined by a set of arrival times
(a1, . . . , aN) and a set of service times (s1, . . . , s2). In order to compute N(t),
the number of customers in the queue at time t, it is convenient to first compute
the exit times. This can be done recursively as follows:

• The first customer exits at time e1 = a1 + s1.
• The second customer exits at time e2 = max(a2, e1) + s2.
• . . .
• The N :th customer exits at time eN = max(aN , eN−1) + sN .

that is, if the queue is empty when customer k arrives he/she exits at sk time-
units after arrival. If there are people in the system, he/she exits at sk time-units
after the previous customer.

Task 10: Write a function that returns a vector of exit-times given
arrival and service times. Then write a function that that computes
the number of people in the queue given arrival and service times.

Task 11: Simulate homogenous Poisson arrival and service times using
suitable parameters. Plot the queue length over time.

A queuing process with non-homogenous Poisson arrivals
The homogenous Poisson process used for arrivals above is easily generalised to
a non-homogenous one by replacing the uniformly distributed arrival times with
e.g. a Beta distribution.

Task 12: Write a function that simulates a queuing system with
non-homogenous Poisson arrivals (your choice!) and non-exponential
service times (your choice, make them positive though!) and returns
the maximum observed queue-length. Run the function 1000 times and
visualise the maximum queue-length distribution with a histogram.

6

	Computer Assignment MT5012 VT2023
	Monte-Carlo integration
	Importance sampling
	Default of an insurance company

	Markov chain Monte Carlo
	Gibbs sampling
	The 2D Ising model

	A single server queue
	A queuing process with non-homogenous Poisson arrivals

