Computational Biology

DNA Sequencing

Department of Mathematics
Stockholm University

- Copying DNA:
- Polymerase chain reaction (PCR)
- Sequencing DNA:
- Sanger Sequencing [AKA 1st generation sequencing]
- Next/2nd-generation sequencing (NGS) [AKA Massive parallel sequencing]
- 3rd-generation [AKA long-read sequencing]

In a nutshell: Breakthrough Technologies

Polymerase chain reaction (PCR)

- used to copy DNA
- Invented by Kary Mullis (Nobel prize 1993)

Per cycle there are 3 phases

- Input: a DNA "template" t to copy, primers, polymerase, bases A, C, G, T,
Process: n "cycles" (see right)
Output: roughly 2^{n} copies of t

In a nutshell: Breakthrough Technologies

Polymerase chain reaction (PCR)

- used to copy DNA
- Invented by Kary Mullis (Nobel prize 1993)
- Input: a DNA "template" t to copy, primers, polymerase, bases A, C, G, T,
Process: n "cycles" (see right)
Output: roughly 2^{n} copies of t

Per cycle there are 3 phases:
(1) Denaturate: $94-98^{\circ} \mathrm{C}$ for $20-30 \mathrm{~s}$
(2) Anneal: $50-65{ }^{\circ} \mathrm{C}$ for $20-40 \mathrm{~s}$
(3) Extension: $75-80^{\circ} \mathrm{C}$

In a nutshell: Breakthrough Technologies

Sanger Sequencing

- used to read "small (500bp)" DNA sequences
- Invented by Fredrick Sanger and coworkers, 1977 (Nobel prize 1980)
- Input: copies of DNA split into 4 test tubes that contains primers, polmerase, bases, "modified bases A, C, T, G " Each tube contains all bases and ONE "modified base" $l \in\{A, C, G, T\}$
Process (Basic Idea): "modified base" I ensures that when added during reading process of one DNA-copy, the reading process stops.
Having multiple copies and the four tubes, this ensures: that (with high probability) the tupe I contains all single strands that end with l.
gel electrophoresis: reads are negative charged and small reads get "closer" to positive pol (proportional to their length)

Output: the read of the input DNA

- used to read "small (500bp)" DNA sequences
- Invented by Fredrick Sanger and coworkers, 1977 (Nobel prize 1980)
- Input: copies of DNA split into 4 test tubes that contains primers, polmerase, bases, "modified bases A, C, T, G " Each tube contains all bases and ONE "modified base" $I \in\{A, C, G, T\}$
Process (Basic Idea): "modified base" I ensures that when added during reading process of one DNA-copy, the reading process stops.
Having multiple copies and the four tubes, this ensures, that (with high probability) the tupe / contains all single strands that end with I.
gel electrophoresis: reads are negative charged and small reads get "closer" to positive pol (proportional to their length)

- used to read "small (500bp)" DNA sequences
- Invented by Fredrick Sanger and coworkers, 1977 (Nobel prize 1980)
- Input: copies of DNA split into 4 test tubes that contains primers, polmerase, bases, "modified bases A, C, T, G " Each tube contains all bases and ONE "modified base" $I \in\{A, C, G, T\}$
Process (Basic Idea): "modified base" I ensures that when added during reading process of one DNA-copy, the reading process stops.
Having multiple copies and the four tubes, this ensures, that (with high probability) the tupe I contains all single strands that end with I.
gel electrophoresis: reads are negative charged and small reads get "closer" to positive pol (proportional to their length)
- used to read "small (500bp)" DNA sequences
- Invented by Fredrick Sanger and coworkers, 1977 (Nobel prize 1980)
- Input: copies of DNA split into 4 test tubes that contains primers, polmerase, bases, "modified bases A, C, T, G " Each tube contains all bases and ONE "modified base" $I \in\{A, C, G, T\}$
Process (Basic Idea): "modified base" I ensures that when added during reading process of one DNA-copy, the reading process stops.
Having multiple copies and the four tubes, this ensures, that (with high probability) the tupe I contains all single strands that end with I.
gel electrophoresis: reads are negative charged and small reads get "closer" to positive pol (proportional to their length)
Output: the read of the input DNA

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..
Process (Basic Idea): when bases with terminators bind, no further base can be added.

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..
Process (Basic Idea): when bases with terminators bind, no further base can be added.
terminators are engineered to glow a particular color (A, C, G, T)
\rightarrow take photo

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..
Process (Basic Idea): when bases with terminators bind, no further base can be added.
terminators are engineered to glow a particular color (A, C, G, T)
\rightarrow take photo
after taking photo, terminators are removed and process is repeated.

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..
Process (Basic Idea): when bases with terminators bind, no further base can be added.
terminators are engineered to glow a particular color (A, C, G, T)
\rightarrow take photo
after taking photo, terminators are removed and process is repeated.

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..
Process (Basic Idea): when bases with terminators bind, no further base can be added.
terminators are engineered to glow a particular color (A, C, G, T)
\rightarrow take photo
after taking photo, terminators are removed and process is repeated.

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..
Process (Basic Idea): when bases with terminators bind, no further base can be added.
terminators are engineered to glow a particular color (A, C, G, T)
\rightarrow take photo

after taking photo, terminators are removed and process is repeated.

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..
Process (Basic Idea): when bases with terminators bind, no further base can be added.
terminators are engineered to glow a particular color (A, C, G, T)
\rightarrow take photo

after taking photo, terminators are removed and process is repeated.
Output: the read of the multiple input DNAs (photos of each cycle)

In a nutshell: Breakthrough Technologies

Next-generation sequencing (NGS)

- used to read multiple "small (500bp)" DNA sequences
- Several methods exits, one is the "Illumina sequencing process":
Input: copies of multiple DNA (fragments) placed on a slide, bases, terminators, polymerase, ..
Process (Basic Idea): when bases with terminators bind, no further base can be added.
terminators are engineered to glow a particular color (A, C, G, T)
\rightarrow take photo
after taking photo, terminators are removed and process is repeated.
Output: the read of the multiple input DNAs
 (photos of each cycle)
Key feature:
massively parallel, photograph captures all templates simultaneously (billions of DNA templates on a slide)

Cost per Human Genome

- Copying DNA:
- Polymerase chain reaction (PCR)
- Sequencing DNA:
- Sanger Sequencing [AKA 1st generation sequencing]
- Next/2nd-generation sequencing (NGS) [AKA Massive parallel sequencing]
- 3rd-generation [AKA long-read sequencing] (currently under active development*, can read more than 10000 bp)

To recall, humanDNA $3.2 \times 10^{9} \mathrm{bp}$, Carsonella ruddii DNA 159 662bp Observation: Whole genomes cannot be read at once.
"Marx, V. Method of the year: long-read sequencing. Nat Methods 20, 6-11 (2023).

- Copying DNA:
- Polymerase chain reaction (PCR)
- Sequencing DNA:
- Sanger Sequencing [AKA 1st generation sequencing]
- Next/2nd-generation sequencing (NGS) [AKA Massive parallel sequencing]
- 3rd-generation [AKA long-read sequencing] (currently under active development*, can read more than 10000 bp)

To recall, humanDNA $3.2 \times 10^{9} \mathrm{bp}$, Carsonella ruddii DNA 159 662bp
Observation: Whole genomes cannot be read at once.
*Marx, V. Method of the year: long-read sequencing. Nat Methods 20, 6-11 (2023).

Observation:
Sequencers cannot read whole genomes at once.

Observation:
Sequencers cannot read whole genomes at once.

Idea_1: randomly break-up long DNA into multiple pieces
?????
?????
break-up into random \downarrow small pieces
(e.g. with ultrasound)
and sequence them

Observation:
Sequencers cannot read whole genomes at once.
Idea_1: randomly break-up long DNA into multiple pieces (e.g. with ultrasound)

Observation:
Sequencers cannot read whole genomes at once.

Idea_1: randomly break-up long DNA into multiple pieces
(e.g. with ultrasound)
and sequence them

	\downarrow $\begin{aligned} & \text { break-up into random } \\ & \text { smill pieces }\end{aligned}$		
?????	????		???
?????			???
		equence	
GTTAG	CATT	TGCAT	AAA
AGGCT			GGC
		ssembly	

TGCATGTTAGCATTAGGCTAAAGGC GGCGTTAGTGC GGCTCATTAAA CATTTGCATGTT AGGGCTAAAGGC

Observation:
Sequencers cannot read whole genomes at once.
Idea_1: randomly break-up long DNA into multiple pieces
(e.g. with ultrasound)
and sequence them
However: if we just use a single DNA strand, well ..
Idea_2: Produce multiple copies of DNA first and then apply Idea_1
ใ????????????????????????
?????????????????????????
break-up into random
\downarrow small pieces

$\begin{gathered} \text { ????? } \\ \text { ????? } \end{gathered}$?????
???????		?????
		????????
???		
	?? ? ? ?	???

GTTAG	
AGGCT	CATT
TTAGCAT	TGCAT
ATG	CAGG
GCTAAAGGC	

Idea_2: Produce multiple copies of DNA first and then apply Idea_1
Observation:
Sequencers cannot read whole genomes at once.
Idea_1: randomly break-up long DNA into multiple pieces
(e.g. with ultrasound)
and sequence them
However: if we just use a single DNA strand, well .
\Longrightarrow results in overlapping reads

For a given set $\zeta=\left\{S_{1}, \ldots S_{N}\right\}$ of strings (=reads of fragments of DNA D), a superstring is a string S that contains all S_{i} as substrings.

Trivially, we could concatenate all strings in ζ to get superstring S. However, having say $\sim 10^{6}$ copies of DNA D fragmented and sequenced, we get then a string S of length $|S| \sim|D| \times 10^{6}$ \Longrightarrow far away from D

In the assembly problem, we want to find a superstring that "best represents" D
There are several ways on how to define "best represents" !!
We start with considering following problem:
Shortest Common Superstring Problem (SCS)
For a given $\zeta=\left\{S_{1}, \ldots S_{N}\right\}$ find a superstring S of shortest length.
SCS is NP-hard So we focus ways to anproximate solutions
\Longrightarrow overlap graphs and Greedy_SCS + DeBruijn-graphs and Eulerian Paths (board)

For a given set $\zeta=\left\{S_{1}, \ldots S_{N}\right\}$ of strings (=reads of fragments of DNA D), a superstring is a string S that contains all S_{i} as substrings.
Trivially, we could concatenate all strings in ζ to get superstring S. However, having say $\sim 10^{6}$ copies of DNA D fragmented and sequenced, we get then a string S of length $|S| \sim|D| \times 10^{6}$ \Longrightarrow far away from D.

In the assembly problem, we want to find a superstring that "best represents" D.
There are several ways on how to define "best represents" !!
We start with considering following problem:
Shortest Common Superstring Problem (SCS)
For a given $\zeta=\left\{S_{1}, \ldots S_{N}\right\}$ find a superstring S of shortest length.
SCS is NP-hard. So we focus ways to approximate solutions
\Longrightarrow overlap graphs and Greedy_SCS + DeBruijn-graphs and Eulerian Paths (board)

For a given set $\zeta=\left\{S_{1}, \ldots S_{N}\right\}$ of strings (=reads of fragments of DNA D), a superstring is a string S that contains all S_{i} as substrings.
Trivially, we could concatenate all strings in ζ to get superstring S. However, having say $\sim 10^{6}$ copies of DNA D fragmented and sequenced, we get then a string S of length $|S| \sim|D| \times 10^{6}$ \Longrightarrow far away from D.

In the assembly problem, we want to find a superstring that "best represents" D.
There are several ways on how to define "best represents" !!
We start with considering following problem:
Shortest Common Superstring Problem (SCS):
For a given $\zeta=\left\{S_{1}, \ldots S_{N}\right\}$ find a superstring S of shortest length.
SCS is NP-hard. So we focus ways to approximate solutions
\Longrightarrow overlap graphs and Greedy_SCS + DeBruijn-graphs and Eulerian Paths (board)

For a given set $\zeta=\left\{S_{1}, \ldots S_{N}\right\}$ of strings (=reads of fragments of DNA D), a superstring is a string S that contains all S_{i} as substrings.
Trivially, we could concatenate all strings in ζ to get superstring S. However, having say $\sim 10^{6}$ copies of DNA D fragmented and sequenced, we get then a string S of length $|S| \sim|D| \times 10^{6}$ \Longrightarrow far away from D.

In the assembly problem, we want to find a superstring that "best represents" D.
There are several ways on how to define "best represents" !!
We start with considering following problem:

Shortest Common Superstring Problem (SCS):

For a given $\zeta=\left\{S_{1}, \ldots S_{N}\right\}$ find a superstring S of shortest length.

For a given set $\zeta=\left\{S_{1}, \ldots S_{N}\right\}$ of strings (=reads of fragments of DNA D), a superstring is a string S that contains all S_{i} as substrings.
Trivially, we could concatenate all strings in ζ to get superstring S. However, having say $\sim 10^{6}$ copies of DNA D fragmented and sequenced, we get then a string S of length $|S| \sim|D| \times 10^{6}$ \Longrightarrow far away from D.

In the assembly problem, we want to find a superstring that "best represents" D.
There are several ways on how to define "best represents" !!
We start with considering following problem:

Shortest Common Superstring Problem (SCS):

For a given $\zeta=\left\{S_{1}, \ldots S_{N}\right\}$ find a superstring S of shortest length.
SCS is NP-hard. So we focus ways to approximate solutions
\Longrightarrow overlap graphs and Greedy_SCS + DeBruijn-graphs and Eulerian Paths (board)

Genomes often consist of repeated regions!
Example: Here, $\zeta=$ set of all substrings of size 6 and $|\zeta|=16$ for all examples.

```
Greedy SCS on 6-mers of a_long_long_long_time
ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
ng_time ong_lon long_ti g_long_ a_long long_l
ong_lon long_time g_long_ a_long long_l
long_lon long_time g_long_ a_long
long_lon g_long_time a_long
long_long_time a_long
a_long_long_time
```

Genomes often consist of repeated regions!
Example: Here, $\zeta=$ set of all substrings of size 6 and $|\zeta|=16$ for all examples.

```
Greedy SCS on 6-mers of a_long_long_long_time
ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
ng_time ong_lon long_ti g_long_ a_long long_l
ong_lon long_time g_long_ a_long long_l
long_lon long_time g_long_ a_long
long_lon g_long_time a_long
long_long_time a_long
a_long_long_time
```

The final superstring is shorter than the original "genome"

Genomes often consist of repeated regions!
Example: Here, $\zeta=$ set of all substrings of size 6 and $|\zeta|=16$ for all examples.

```
a_long_long_time
a_long_long_long_time
a_long}long_t
    _long_ ong_ti
    long_1 ng_tim
        long_1 g_time
        ong_lo
        ong_lo
        ng_lon
        ng-lon
        g_long
        g-long
            _long_
            _long_
        a_long_long_long_long_long_time
        a_long}long_l g_long ng_tim
            _long_ ng_lon long_l g_time
                ong_lo _long_ ng_lon
                    g_long ong_lo -long_
                long_t
```

Genomes often consist of repeated regions!
Example: Here, $\zeta=$ set of all substrings of size 6 and $|\zeta|=16$ for all examples.

```
a_long_long_time a_long_long_long_time
a_long long_t
    _long_ong_ti
    long_1 ng_tim
        long_1 g_time
        ong_lo
        ong_lo
        ng_lon
        ng_lon
        g_long
        g_long
        long_
        _long_
        a_long_long_long_long_long_time
        a_long long_l g_long ng_tim
            _long_ ng_lon long_l g_time
                ong_lo _long_ ng_lon
                    g_long ong_lo -long_
                                    ong_ti
```

To work with such problems one may employ: DeBruijn-graphs and Eulerian Paths. (board)

De Bruijn graph ($k=5$) for:

a_long_long_long_time

Eulerian walk gives original genome!

$k=8 \quad$ Genome: a_long_long_long_time
Reads: a_long_long_long, ng_long_l, g_long_time
k-mers: a_long_l
-long_lo
$\underset{\mathrm{g}_{-}}{\mathrm{ng} \text { long_l }}$ \qquad

Overlap graphs and DeBruijn graphs can be used to represent "relationships" between substrings.
The provided algorithms can, in general, not solve the assembly problem in an "optimal way" but serve as useful heuristics.

There are more sophisticated methods out there that are often based on these type of algorithms that of often based on the latter ideas.

[^0]
Classical problems in practice:

- sequencing errors
- overlapping regions of fragments that are located on "far away" positions on DNA
- incomplete data (DNA not covered by resulting sequenced fragments)
- orientation of reads usually unknown
- repeats

[^0]: *Medvedev \& Pop What do Eulerian and Hamiltonian cycles have to do with genome assembly? PLoS Comput Biol. 2021

