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Commentaries to Foundations of Analysis

1 Proofs and definitions

The main goal of the course is for the student to learn to read and understand mathematics.
This is no easy thing and the course is generally considered to be quite “heavy”. One reason
for the difficulty in learning how to read mathematics is that mathematical notation has been
developed for a very long time. The result is that there are a large number of conventions that
are intended to to help readers but of course won’t unless they understand them.

There is however a more important reason for the difficulties. The problem is that mathemat-
ics does not deal in anything specific that one may refer to (contrary to for instance the different
natural sciences). For psychological/pedagogical reasons it is however important to create one’s
own images (that are not necessarily visual) of various mathematical notions. Exactly because
there is no “reality” to refer to these images become very individual and it is almost impossible
to use them to discuss mathematics with others or to write about mathematics.

The solution to this problem, in particular when written mathematics is concerned, is to
confine oneself to a very precise and rather formal language whose interpretation everyone learns
to agree upon. This means that in order to be able to read mathematics one must

• learn to understand this formal and precise common language,

• create one’s own language or images and

• learn to translate between the common formal language and one’s private.

Note that it is a necessity to create one’s own language. This means that the teacher’s
attempt to explain a mathematical text should not be considered the “correct” explanation but
at most a possible one. It is always necessary for the student to make up a personal explanation.
In the beginning this will be difficult as the personal language has not been yet been developed.
The only way to proceed in such a development and at the same time learn how to translate
between the common and private languages is to work with mathematical definitions, statements
and proofs. In the beginning one should expect to work a lot with them, to the point that one
will as a consequence have learnt them by heart. It is important to realise however that that is
not a goal in itself but that the development of one’s own language that can be used to express
mathematical notions is. Once this has been accomplished one will not have any need for learning
them by heart.

As has already been said it is important to understand that the language and the images
one will finally arrive at is one’s own and that the suggestions of others do not necessarily suit
oneself. There are however some principles that seem to help most people to learn how to analyse
definitions, statements and proofs and we shall in these notes take up some of them.

The very first thing one should do when reading a mathematical definition or statement is
to understand what it says. That means for instance that one checks that one understands all
the terms involved, that one understands what is assumed and what is claimed under the given
assumptions. In particular one should make clear the exact formulations; there is for example a
difference between “for all x there exists a y” and “there is a y such that for every x”.

If it is then a question of a definition one can continue by

• try to find some examples that fulfil the conditions of the definition,

• try to find some examples that do not fulfil the conditions of the definition and

• try to understand the purpose of the definition.
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As far as examples and non-examples of a definition are concerned it is important to find
such not just to understand a definition but also for the future. When a definition is applied as
part of a new definition, statement or proof one needs to understand the new ones. Having good
examples as well as non-examples of the original definition is then likely to be a help. What is
meant by “good examples” varies fo course but as a general principle it is important on the one
hand not to have too many examples, on the other hand that they cover all important aspects
of the definition. If one only picks one example there is a risk that one will fixate too much on
it and that one, inadvertently no doubt, lets special properties of the particular example sneak
in, properties that do not follow from the definition. Too many examples on the other hand may
make them unusable.

Non-examples on the other hand are there to mark the boundaries of the definition and it is
thus important to choose them as close as possible to examples that do fulfil the definition.

Finally, understanding the purpose of a definition is a rather vague task. On the one hand,
there probably is one as otherwise one would hope that noone would have bothered to introduce
the definition. The purpose may on the other hand not be clear immediately. It could be that
only later in the text will there be a use of the new notion.

Let us look at an example of a definition. We begin by giving a version whose purpose is to
make it as difficult as possible to understand its purpose.

Definition 1.1 A field is a quintuple (K, p,m, a, b) where

• K is a set,

• p is a function p : K ×K → K,

• m is a function m : K ×K → K,

• a and b are elements of K.

These data must fulfil the following conditions for all x, y, z ∈ K:

1. p(x, y) = p(y, x).

2. p(x, p(y, z)) = p(p(x, y), z).

3. m(x, y) = m(y, x).

4. m(x,m(y, z)) = m(m(x, y), z).

5. m(p(x+ y), z) = p(m(x, z),m(y, z)).

6. p(a, x) = x.

7. m(b, x) = x.

8. There is an x′ such that p(x, x′) = a.

9. If x 6= a then there is an x′′ such that m(x, x′′) = a.

This definition is difficult to penetrate. It is not even easy to find examples (non-examples
are easier!) that fulfil it and the purpose is not clear at all. We make a new attempt where
we formally give the same definition but formulated in such a way so as to make it easier to
understand.

Definition 1.2 A field is a quintuple (K,+, ·, 0, 1) where

• K is a set,

• + is a function +: K ×K → K,
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• · is a function · : K ×K → K,

• 0 and 1 are elements of K.

These data must fulfil the following conditions for all x, y, z ∈ K:

1. (Commutativity for addition) x+ y = y + x.

2. (Associativity for addition) x+ (y + z) = (x+ y) + z.

3. (Commutativity for multiplication) x · y = y · x.

4. (Associativity for multiplication) x · (y · z) = (x · y) · z.

5. (Distributivity) (x+ y) · z = x · z + y · z.

6. (Unit element for addition) 0 + x = x.

7. (Unit element for multiplication) 1 · x = x.

8. (Additive inverse) There is an x′ such that x+ x′ = 0.

9. (Multiplicative inverse) If x 6= 0 then there is an x′′ such that x · x′′ = 1.

Now it looks much more understandable. Note to begin with that we have written the
function values in so called infix form, i.e., what really should be written +(x, y) (just as we
wrote it p(x, y) in our first definition) we write as x+ y. This is an example of a mathematical
convention; if one uses (very) special function names such as + and · one may (and almost always
does) use the infix notation.

Similarly, the choice of the name ’+’ for the first function, ’·’ for the second and 0 and 1 for
the two elements is no coincidence. In fact, with these choices it suddenly becomes very simple
to find examples of quintuples that fulfil these conditions. We have made these even clearer by
writing small comments in front of each conditions.
Exercise 1: i) Find examples of fields.

ii) Find quintuples fulfilling all conditions except

• the last,

• the last two,

• the second to last,

• the third and the last and

• the third.

(The last case is difficult.)

There are more examples than the ones that first comes to mind and as one of them is
somewhat peculiar it is good to have among one’s collection of examples.
Exercise 2: Let K be the set {0, 1} and define addition by

+ 0 1
0 0 1
1 1 0

and multiplication by
· 0 1
0 0 0
1 0 1

.
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Show that the quintuple (K,+, ·, 0, 1) is a field.

If one then considers the purpose of this definition, it would seem to be reasonably obvious.
One could summarise it by saying that a field is a set for which one has access to the four basic
arithmetic operations and all the rules among them that we are used to. The example given in
the last exercise shows however that one has to be a little bit careful. We are for example not
allowed to assume that 1 + 1 is different from 0.
Remark: There is a little bit more to the purpose of a definition. A definition should also be
useful in that it has interesting consequences. The notion of fields is indeed very useful. One
example of that is that a very large part of linear algebra (which one first only meets over the real,
or possibly complex, numbers) makes sense and is true for all fields. This has many applications.

We shall now have a look at statements and their proofs. For statements the same holds as
for definitions: First one must understand what they are saying and what needs to be done to do
that is roughly the same; understand all terms involved, figure out assumptions and conclusions
and so on. The next step is to understand what they mean but this stage differs from the
corresponding stage for definitions. In the beginning the difference is not so large however. It
may be a good thing to do the following.

• Try to find some examples of situations where the assumptions are fulfilled and try to
understand which consequences the statement gives in such examples.

• Try to find some examples of situations where the assumptions are not fulfilled (and for
this step to be useful, the conditions should be close to being fulfilled). If one can come
up with examples where the conditions are almost fulfilled but the conclusion is false it is
even better.

What one then can try to do is to see if one can see what the statement is good for. This can
be quite difficult and may not even be clear when one is reading the statement.

2 Ett analyserat bevis
We shall show how to use the supremum axiom to show that there is a positive real number r
such that r2 = 2. At the same time we shall see how one can organise a proof. Just like in “real
life” we start with a lemma whose significance will be made clear only in a little while.

Lemma 2.1 i) Every downwards bounded set (of real numbers) has a largest lower bound.
ii) If r and s are positive real numbers and r2 < s2, then r < s.
iii) For all real numbers r > 0 we have that (r2 + 4/r2)/4 ≥ 1.

Proof. For the first statement we assume that S is a set of real numbers that is downwards
bounded byM , i.e., if s ∈ S then we have thatM ≤ s. Consider now the set S′ := {−s | s ∈ S }.
As −s ≤ −M for all s ∈ S we have that S′ is upwards bounded by −M and according to the
supremum axiom there is a smallest upper bound S′. Then −N is a largest lower bound for S.

For the second part we may assume that 0 ≤ s ≤ r. From this it follows s2 ≤ r2 which is a
contradiction.

For the last statement we have

0 ≤ (r − 2/r)2 = r2 − 4 + 4/r2

which gives 1 ≤ (r2 + 4/r2)/4 by moving the four to the other side and then dividing by 4.

One problem with proofs is that they are adapted to the imagined reader and hence a proof
having one type of audience in mind may skip a lot of details that wouldn’t be skipped otherwise.
This is usually a good thing as a proof with less unnecessary details is easier to read. It does
however require a reader in training to realise that usually some details are skipped.
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Exercise 3: Give an account of the details that have been skipped in the proof and write a more
careful proof that fills them in.

We are now ready to show our result.

Proposition 2.2 There is a positive real number r such that r2 = 2.

Proof. Consider the set S := {s ∈ R | s > 0, s2 ≥ 2 }. This set is bounded downwards by for
instance 0 and according to (2.1:i) it has a largest lower bound, r say, which is positive as 0 is a
lower bound of S. We shall now show the following:

• It is not true that r2 < 2.

• It is not true that r2 > 2.

Together these statements show that r2 = 2.
If we start with the first statement we may assume that r2 < 2. Now put ε := (2 − r2)/5

which according to the assumption is a positive real number. According to (2.1:ii) we have
r < 2 because r2 < 2 < 22 and thus ε ≤ 1 which implies that 2r + ε ≤ 5 and hence that
ε(2r+ε) ≤ (2−r2)/5 ·5 ≤ 2−r2. We have therefore that (r+ε)2 = r2+ε(2r+ε) ≤ r2+2−r2 = 2
but this gives that for s ∈ S we have that (r+ ε)≤2 ≤ s2 and by (2.1:ii) we get that r+ ε ≤ s so
that r+ε is a lower bound but as ε > 0 it is a greater lower bound than r which is a contradiction.

If we instead assume that r2 > 2 we have that 2/r < r which means that if we put t :=
(r + 2/r)/2 then we have that t < r. We further have that t2 = (r2 + 4 + 4/r2)/4 ≥ 1 + (r2 +
4/r2)/4 ≥ 1 + 1 = 2, where for the last inequality we have used (2.1:iii), so that t ∈ S but as
t < r we have that r is not a lower bound.

When analysing a proof suspicion (paranoia even) is an appropriate frame of mind. It is
necessary to question every statement that is made in the proof and get to understand why it
is true. This is also where a proof suitable for an unexperienced reader should be more detailed
than one written for a more experienced one; an experienced reader will be able to fill in small
details immediately and will only be disturbed by extra details.

Exercise 4: i) Give an account of skipped details of the the proof and write a more complete
one that fills them in.

ii) Mark where the different results of the lemma are used in the proof. Rewrite the proof so
that what is proved in the lemma is instead proved within the proof of the proposition. Compare
readability of the two approaches.

iii) Try to explain how one arrives at the choice ε := (2− r2)/5.
iv) Trye to figure out why one puts t := (r + 2/r)/2.
v) Show that for each a > 0 there is an r > 0 such that r2 = a.

3 Cardinality

A comment in section 2.3 makes some claims that are not is clear as the author’s "clearly" would
suggest. Fact is that it is quite instructive to go through the argument that is hidden behind
these words. The section defines a relation A ∼ B between sets; A ∼ B if there is a bijection
f : A→ B and claims the following for it:

• A ∼ A for all sets A.

• If A ∼ B then B ∼ A.

• If A ∼ B and B ∼ C then A ∼ C.
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It is often a good idea to think of mathematical staement and their proofs in terms of a game
between two persons where a proof gives a strategy that guarantees a win for the first player.
A round for the first statement (A ∼ A) would look like this (at each step the player about to
make a move may concede defeat but we will not mention that explicitly):

1. Player 1 makes the claim A ∼ A for all A.

2. Player 2 now chooses a specific set A.

3. Player 1 must now show that for the choice of A made by player 2 we have that A ∼ A.
According to the definition of the relation A ∼ A this means that player 1 must choose a
function f : A→ A and make the claim that it is a bijection.

4. Player 2 can now aim at either showing that f is not onto or that it is not 1-1. In the
former case an a ∈ A is chosen by player 2.

5. Player 1 must now choose a b ∈ A such that f(b) = a. Once this has been done the round
has been won by player 1.

6. The second possibility is that player 2 aims at questioning that f is 1-1. In that case the
player must choose two elements a, a′ ∈ A such that f(a) = f(a′).

7. Player 1 now wins if a = a′ and player 2 wins if a 6= a′.

If player 2 should happen to start a round by choosing A = {1, 2, 3} then player 2 has many
different ways of choosing different (6 to be precise) bijections from A to A and will then win by
choosing any of them. This however is done by “improvisation”, i.e., it depends on the precise
nature of the particular choice of A. To prove ∀A : A ∼ A we must come up with a strategy that
is guaranteeing that player 1 wins no matter which A is chosen (and there are many very strange
sets). That player 1 has specified a function f means that if player 2 chooses an a ∈ A, player
1 must be able to find a b ∈ A such that f(b) = a. The only thing that player 1 can assume
about A at that stage is that a is in it. Hence it looks difficult to come up with another element
b (of course f could be chosen very cleverly but as we know nothing about A we can not hope
to be able to be very clever about its choice). This argument is not something that would be a
part of a winning strategy but instead part of an argument that, hopefully, will lead to one. We
have therefore come up with a candidate strategy not because we are sure it is a good one but
because it seems to be the only possible one. The strategy is that no matter what set A player 2
will come up with player 1 should choose the identity functino, id, that is defined by id(a) = a.
This is not a complete strategy however only its first step; we must also specify how player 1
should react at the following steps.

• If player 2 chooses to question that the function is onto and presents player 1 with some
a ∈ A then player 1 will win as a can be an answer and indeed id(a) = a.

• If player 2 chooses to question that the function is onto 1-1 and send back a, a′ ∈ A with
id(a) = id(a′) then player 1 wins as a = id(a) = id(a′) = a′.

We thus see that we have found a winning strategy for player 1. When one is writing a
mathematical proof it is (usually) not formulated in terms of games and strategies but it is not
difficult to see how close a more standard formulation lies to a gametheoretic one. This can be
seen if we write down a proof of A ∼ A in traditional terms.

Given a set A we consider the identity function id : A→ A. This is a bijection because given
a ∈ A we have id(a) = a which shows thatid is onto and given a, a′ ∈ A with id(a) = id(a′) we
have that a = id(a) = id(a′) = a′ and thus id is 1-1.

We even see that the word given corresponds exactly to what the opponent, player 2, gives
us, player 1 as data that are part of a move.



7

As further illustration let us consider the third part A ∼ B ∧B ∼ C ⇒ A ∼ C. In this game
the first of move of player 2 is to produce three sets A, B och C together with two bijections
f : A→ B and g : B → C. Note that suddenly player 2 is in a more exposed situation; player 1
may now claim that f or g are bijections and player 2 must accept that. In any case player 1
is now forced to in one way or other cook up a function h : A → C and must be able to defend
that it is a bijection. The player can, it seems, only expect to be able to use f and g to do that
and it is difficult to see how to construct a function A → B in any other way than to compose
them; h = g ◦ f . If this now is the move of player 1, player 2 may now choose to question
either that h is 1-1 or that it is onto. In the first case player 2 will return a, a′ ∈ A such that
h(a) = g(f(a)) is equal to h(a′) = g(f(a′)). However, player 2 has guaranteed that g is 1-1 and
as g(f(a)) = g(f(a′)) player 2 is forced to agree when player 1 claims that f(a) = f(a′). As
player 2 also has guaranteed that f is 1-1 again the player is forced to accept that a = a′ and
player 1 wins.

If instead player 2 questions that h is onto and send a c ∈ C to player 1 the latter is allowed to
insist that player 2 must deliver a b ∈ B such that g(b) = c as player 2 is the guarantor for the fact
that g is onto. Player 1 can then insist that player 2 choose a a ∈ A with f(a) = b as again player
2 has guaranteed that f is onto. Player 1 now wins by delivering a as h(a) = g(f(a)) = g(b) = c.
That means that we have found a winning strategy.

Exercise 5: Rewrite this winning strategy into a proof in the ordinary sense.

Exercise 6: Find a winning strategy for A ∼ B ⇒ B ∼ A and write it as an ordinary proof.

Exercise 7: That a function f : A → B is a bijection is the same thing as it having an inverse
g : B → A, i.e., the composites g ◦ f and f ◦ g are the identity functions on A resp. B. When a
player claims that a function is a bijection the other player may instead demand that the first
player produce an inverse. Find winning strategies for the three games where the players make
such demands instead och rewrite them as ordinary proofs.

4 Mathematical notation

Mathematical notation is complicated as it on the one hand aims at extreme precision and on
the other tries to be as readable as possible. This means for instance that it often uses certain
conventions that however can not be automatically assumed to be in play. An example is that
one often use m or n to denote integers and r or s to denote real numbers. This does not mean
that one can write “Consider r” and then assume that one has made clear that r must be a real
number. One must rather say “Consider r ∈ R”. It is on the other hand a good idea to use r (or
s...) for a real number as it makes it much easier for a reader to understand what is going on.

Remark: A very striking example on how deeply rooted these conventions are is the integral∫ 2

1

ex de.

It is perfectly legitimate to use any name for the variable of integration and once e has been
chosen it supercedes in the integrand any special meaning e might otherwise have (such as being
the base of the natural logarithm. . . ). It is clearly however a bad idea to use e in this manner and
the way to deal with this integral is probably to immediately replace the variable of integration
so as to arrive at (for instance) ∫ 2

1

yx dy.
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4.1 Sequences

As somewhat more serious example of notation is for sequences. The general principle is that
if a is a sequence of elements of a set S then an is the n’th element of the sequence. Note that
one speaks also of “The sequence (an)”. This is really the same thing, one may even write “The
sequence a = (an)” and then it is exactly the same thing; one gives the sequence a name and
at the same one gives the name an to the n’th element of the sequence. The advantage of the
(an)-notation is flexibility. One can to begin with use (n2) to denote a sequence a that has
an = n2. One can then reindex the sequence and speak of the sequence (a2n) which with the
given definition has (2n)2 = 4n2 as its n’th element. The notation (an) does however have its
disadvantages. The first thing that can confuse is that (ap) is exactly the same sequence as (an);
in the first case one has a sequence whose p’th element equals ap and in the second a sequence
whose n’th element is an. It is thus not possible to use different index variables to define different
sequences. Things can become even more complicated if S has some special form. A confusing
example is when S itself is a set of sequences of another set T . This means that if a is a sequence
of elements of S, then each individual element an is also a sequence (of elements of T ). It is
likely that one sooner or later needs some kind of notation for those elements. Luckily we do not
need to come up with some new notation for them. We have already said that if x is a sequence,
then xm denotes its m’th element. Thus the m’th element of an is denoted as anm but as it is
somewhat difficult to quickly see what this should mean one usually throws in some parentheses,
(an)m. One could of course also write this as am,n but way of writing is not part of the standard
conventions so one should explicitly tell what it means. The advantage of (an)m is that there
one does not need to say anything extra as its meaning follows from a single (standard) rule.
This rule can then be combined with other rules so that (n2)4 means the fourth element of the
sequence (n2), i.e., (n2)4 = 42 = 16.

4.2 Existential notation

Particularly in analysis statements of the form “For all . . . there exists . . . such that . . . ”. It is ex-
tremely important to understand such statement and in particular to understand how seemingly
minute variations in formulations may have a huge importance. An example of such variations
is the difference between punctual and uniform convergence:

• If f, fn : X → Y are functions where Y is a matric space, then f is the pointwise limit of
(fn) if

∀ε > 0∀x ∈ X∃N : dY (fn(x), f(x)) < ε when n > N .

• If f, fn : X → Y are functions where Y is a matric space, then f is the uniform limit of
(fn) if

∀ε > 0∃N∀x ∈ X : dY (fn(x), f(x)) < ε when n > N .

These two definitions do indeed look very much alike even though a close look reveals that
there is a difference; for pointwise convergence we have “for all x there is an N ” while for uniform
convergence we have “there is an N such that for all x”. This is of course a difference but it may
not be clear what it means. One way of getting a hold of that is to think in terms of a game
between two persons as above.

Pointwise convergence:

1. I claim that (fn) converges pointwise towards f .

2. My opponent gives me an ε > 0 and an x ∈ X.

3. I win if I can produce an N such that for all n > N we have d(fn(x), f(x)) < ε.
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Uniform convergence:

1. I claim that (fn) converges uniformly towards f .

2. My opponent gives me an ε > 0.

3. I now produce an N .

4. My opponent wins if there is an x ∈ X and an n > N such that d(fn(x), f(x)) ≥ ε.

This makes the difference clearer but there is an even better way to make it clear: In a “for
all . . . there exists . . . ” one first chooses something and then something else is supposed to exist,
i.e., what is to exist may depend on the first choice. This dependence can be made clear in the
notation. For pointwise convergence this results in

∀ε > 0∀x ∈ X∃Nε,x : dY (fn(x), f(x)) < ε when n > Nε,x,

where it has been made clear that N is allowed to depend on both ε and x whereas for uniform
convergence one has

∀ε > 0∃Nε∀x ∈ X : dY (fn(x), f(x)) < ε when n > Nε,

where it is now clear that N is only allowed to depend on ε. If the expressions are complicated
one may allow oneself to skip the indices so that for instance one might write

∀ε > 0∀x ∈ X∃Nε,x : dY (fn(x), f(x)) < ε when n > N,

where Nε,x are N are the same number. One may however not write

∀ε > 0∀x ∈ X∃N : dY (fn(x), f(x)) < ε om n > Nε,x,

it must be completely clear that N may depend on ε and x and one must thus put them in when
N is introduced.

5 More analysed proofs
We shall now have a look at some of the proofs in the book and make an attempt at analysing
them.

5.1 The Weierstrass approximation theorem
The proof of the Weierstrass approximation theorem (Sats 7.26) is instructive as it quite naturally
can be divided up into smaller steps.

• An initial reduction is made to the interval [0, 1]. (The book does not say why but it is a
matter of considering t 7→ f((1− t)a+ tb) on the interval [0, 1].)

• A second initial reduction is to the case when f(0) = f(1) = 0. This allows us to define f
for all real numbers by setting its value to 0 outside of [0, 1] and f is then still uniformly
continuous.

• The proof then consists in writing down an explicit formula for an approximating sequence:

Pn(x) :=
∫ 1

−1

f(x+ t)Qn(t) dt.

• Two things must no be shown; that Pn is a polynomial and that Pn → f uniformly.
Interestingly enough these two facts are true for completely different reasons.



10

• To show that Pn is a polynomial we first note that as f is 0 outside [0, 1] we get the same
integral if we modify the interval of integration a little bit.∫ 1

−1

f(x+ t)Qn(t) dt =
∫ 1−x

−x
f(x+ t)Qn(t) dt

and we may then make a change of variable t→ t− x so that we get

Pn(x) =
∫ 1

0

f(t)Qn(t− x) dt.

As Qn is a polynomial we may write Qn(t− x) as

Qn(t− x) =
∑
i

Qin(x)t
i

where Qin(x) are polynomials which gives

Pn(x) =
∑
i

Qn(x)
∫ 1

0

f(t)ti dt

which in turn shows that Pn is a polynomial.

• To show that Pn → F uniformly we use three properties of Qn:

1. Qn(x) ≥ 0 for all x.

2.
∫ 1

−1
Qn(t) dt = 1.

3. For each δ > 0 Qn converges uniformly to 0 on the set [−1, 1]\]− δ, δ[.

• Let us show that for a sequence of (integrable) functions Qn with these properties and a
continuous function f on [0, 1] with f(0) = f(1) = 0 we have that Pn → f uniformly, where

Pn(x) =
∫ 1

−1

f(t+ x)Qn(t) dt,

and where we let f be 0 one [−1, 1] outside [0, 1]. This makes f a continuous function on
[−1, 1]. We can thus put M := supx∈[−1,1] |f(x)| and choose δ > 0 so that |f(s)− f(t)| < ε
if |s − t| ≤ 2δ (for s, t ∈ [−1, 1]). Finally we choose N such that if n ≥ N then we have
Qn(x) < ε if |x| ≥ δ. In that case we have, forn ≥ N ,

|Pn(x)− f(x)| 1)
=
∣∣∣∣∫ 1

0

(f(t+ x)− f(x))Qn(t) dt
∣∣∣∣ 2)

≤∣∣∣∣∣
∫
|t|≥δ

(f(t+ x)− f(x))Qn(t) dt

∣∣∣∣∣+
∣∣∣∣∣
∫ δ

−δ
(f(t+ x)− f(x))Qn(t) dt

∣∣∣∣∣ 3)

≤

∫
|t|≥δ

|f(t+ x)− f(x)|Qn(t) dt+
∫ δ

−δ
|f(t+ x)− f(x)|Qn(t) dt

4)
<

4Mε+ ε

∫ δ

−δ
Qn(t) dt ≤ 2Mε+ ε = (2M + 1)ε

and the right hand side tends to 0 when ε→ 0. Equality 1) follows from

f(x) = f(x) · 1 = f(x)
∫ 1

−1

Qn(t) dt =
∫ 1

−1

f(x)Qn(t) dt
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and inequality 2) follows from a division of the interval of integration into {t ∈ [−1, 1] | |t| ≥ δ }
(which consists of two intervals) and [−δ, δ] and use the triangle inequality. After that we
get inequality 3) from the fact that one may estimate an integral by the integral of the
absolute value of the integrand together with the fact that Qn ≥ 0. Inequality 4) is
true as we have that |f(t + x) − f(x)| ≤ 2M , Qn(t) < δ för |t| ≥ δ and the length of
{t ∈ [−1, 1] | |t| ≥ δ } is < 2 together with the fact that |f(t+ x)− f(x)| < ε when |t| ≤ δ.
The last inequality follows from∫ δ

−δ
Qn(t) ≤

∫ 1

−1

Qn(t) = 1

as Qn(t) ≥ 0.

• The remaining somewhat tricky part that remains is the construction of the polynomials
Qn fulfilling the three conditions. The polynomials ((1 − x2)n) fulfil 1) and 3) but not 2)
and we must normalise them by multiplying them by a constant cn so that 2) is fulfilled.
The problem is that if the cn should happen to be too large we may destroy 3). More
precisely cn(1 − x2)n is bounded by cn(1 − δ2)n in [0, 1]\] − δ, δ[ so the condition is that
cna

n → n when n→∞ for all 0 ≤ a < 1. The estimate in the book gives cn ≤
√
n which

implies this (with large margins).

It might be interesting to think about what kind of construction
∫ 1

−1
f(x + t)Q(t) dt is. To

give it a form that looks like the one we obtained after the change of variables one often make
a change of variables t 7→ −t to make it equal to

∫ 1

−1
f(x− t)Q(−t) dt and one then uses Q(−t)

instead of Q(t). Apart from that one also extends the interval of integration to ]−∞,∞[. (This
does not change the integral as f is 0 outside of [0, 1].) This gives an example of the so called
convolution

(f ∗ g)(x) :=
∫ ∞
−∞

f(x− t)g(t) dt.

(Some conditions are required to make this integral convergent. That f is 0 outside of a finite
interval is more than enough.) If one makes the change of variables s = x− t we get

(f ∗ g)(x) =
∫ ∞
−∞

f(x− t)g(t) dt =
∫ ∞
−∞

f(s)g(x− s) ds = (g ∗ f)(x).

(Again some assumptions must be made in order for the change of variables to be permissible,
that f or g vanishes outside a finite interval is enough.) This relation is exactly the relation we
used to show that Pn was a polynomial. If we then want to understand the approximation part, it
is useful to consider a discrete version of the convolution. Let therefore (an) be a sequence of real
numbers where n runs over all integers and let (bn) be another such sequence. We assume that
all but a finite number of bn are different from 0 and defines the convolution sequence ((a ∗ b)n)
by

(a ∗ b)n :=
∑
i

an−ibi.

This looks like an infinite sum but as only a finite number of the bi are non-zero it is in reality
finite (it would also be enough that only a finite number of the ai are non-zero).
Exercise 8: Show that if a and b are two sequences, where one of them has only a finite number
of non-zero values, then we have a ∗ b = b ∗ a.

The discrete convolution has many applications. In some of these applications one imagines
that (an) specifies some kind of signal (for instance a sound signal) and the convolution is
expected so “smooth” the signal with the aid of the (bn). This means that

• only values that are close to a given position should affect the new value in the same
position, and thus the bi should be different from zero only if |i| is small,
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• we do not want to turn the signal “upside down” and thus we should have bn ≥ 0 for all n
and

• we only want to smooth out the signal not increase or decrease it which is true if (and only
if)
∑
i bi = 1.

One doesn’t need to make a convolution in one dimension only but one may for instance
consider sequences (am,n) and (bm,n) in two discrete variables and the convolution given by

(a ∗ b)m,n :=
∑
i,j

am−i,n−jbi,j .

In this case ai,j might specify the amount of gray in a picture bi,j could be user in an attempt
to improve resolution. A given resolution corresponds to a given size of pixels, i.e., the picture is
divided into squares of a certain size where the grayness level is constant in each square (see Fig.
1). Each square can then be divided up in (for instance) four subsquares. The grayness level

Figure 1: Low resolution picture.

of each smaller square is then modified by weighting it with the levels of neighbouring squares.
The weight factors can for instance be specified by the following matrix.

0.05 0.1 0.05
0.1 0.4 0.1
0.05 0.1 0.05

where the central factor 0.4 is the weight given to the gray level in the given square, 0.05 is the
weight given to the gray level in the squares up to the left or right and down to the left and
right and so on. The transformed picture will then have smoother transitions which normally
means a picture with a higher resolution (see Fig. 2). In terms of convolution, the transition
from the first picture to the second is given by a convolution a 7→ a∗b, where the gray level in the
square (m,n) is given by am,n and b is given by the above matrix, i.e., m0,0 = 0.4, m1,1 = 0.05,
m1,−1 = 0.05, m−1,1 = 0.05, m−1,−1 = 0.05 and so on (with am,n = 0 if |m| > 1 or |n| > 1).

It is clear in the discrete case (and at least by analogy in the continuous) that the more
one concentrates the values of b to (0, 0) (or 0 in the one-dimensional case) the closer will the
transformed sequence be to the original. In the discrete case one may even choose b with b0,0 = 1
and the rest bm,n = 0 in which case a ∗ b will be equal to a. In the continuous case there is
no function g such that f ∗ g = f for all f but the result above gives precise condition for us
to have f ∗ Qn → f and it is clear that these conditions say that Qn becomes more and more
concentrated around 0. If we draw different Qn for our specific example Qn(x) = cn(1−x2)n we
see (Fig. 3) this very concretely.
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Figure 2: Convolution of low resolution picture.
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Figure 3: Qn(x) for n = 10, 40, 100.

Exercise 9: A trigonometric polynomial is a function of the form
∑M
n=0 an cos(nt) + bn sin(nt).

i) Show that products and sums of trigonemetric polynomial is again a trigonemetric poly-
nomial.

ii) Show that each continuous function f on [−π, π] with f(−π) = f(π) may be uniformly
approximated by trigonemetric polynomials.
Hint: Consider convolution with Qn(t) = dn cos2n(t) for suitable dn.

5.2 The chain rule
The proof of the chain rule for the differential of functions (Sats 9.15) is quite “polished” making
it difficult to see how one might arrive at it. A step by step analysis can look as follows:

• That a function h : U → Rn, U open in Rm, is differentiable in a point z0 ∈ U means
that there is a function ε : V → Rn defined in a neighbourhood V of 0 ∈ Rm such that
h(z0 +h) = h(z0)+Ch+ |h|ε(h) for some linear map C : Rm → Rn and such that ε(h)→ 0
when h→ 0.

• If we use the notations of the book there are therefore ε and η such that f(x0 + h) =
f(x0) +Ah+ |h|ε(h) and g(y0 + k) = f(y0) +Bk+ |k|η(k) with ε(h)→ 0 when h→ 0 and
η(k)→ 0 when k → 0.

• If we put F = g ◦ f we have F (x0 + h) = g(f(x0 + h)). We can expand f(x0 + h) as above
which gives us

g(f(x0 + h)) = g(y0 +Ah+ |h|ε(h)).
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• When h is small so is Ah+ |h|ε(h) and hence it seems reasonable to put k = Ah+ |h|ε(h)
and apply the expansion of g to it:

g(y0 +Ah+ |h|ε(h)) = g(y0 + k) = g(y0) +Bk + |k|η(k).

• If we look more closely at Bk it is equal to B(Ah+ |h|ε(h)) but B is linear so this becomes
equal to

BAh+ |h|B(ε(h))

and if we write everything out we get

F (x0 + h) = F (x0) +BAh+ |h|B(ε(h)) + |k|η(k).

This in turn looks like F is differentiable with differential BA provided that |h|B(ε(h)) +
|k|η(k) tends towards 0 faster than h.

• We therefore compare it with |h|

|h|B(ε(h)) + |k|η(k) = |h|
(
B(ε(h)) +

|k|
|h|
η(k)

)
and thus what is left to prove is that

B(ε(h)) +
|k|
|h|
η(k)→ 0

when h→ 0.

• We have that ε(h) → 0 and as B is continuous we get that B(ε(h)) → 0 which takes care
of the first term.

• We have that

|k| = |Ah+ |h|ε(h)| ≤ |Ah|+ |h||ε(h)| ≤ ‖A‖|h|+ |h||ε(h)|

which gives that
|k|
|h|
η(k) ≤ (‖A‖+ |ε(h)|) η(k).

The first term, ‖A‖+ |ε(h)|, is smaller than ‖A‖+1 if h is small and η(k)→ 0 when h→ 0
as k → 0.

6 Specific comments

6.1 Ordered sets
In Definition 1.5 of ordered sets there is (at least in some printings) a misprint: The correct
formulation of (ii) is “If x, y, z ∈ S, if x < y and y < z, then x < z.” (The second z has
incorrectly become x.)

6.2 Rational density
The second part of Thm 1.20 is easier to understand if divided up into two pieces (both of which
are interesting in themselves, the second part being 1.20 (b)):

• If x, y ∈ R with y − x > 1, then there is an integer m with x < m < y.
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• If x < y, then there is a p ∈ Q with x < p < y.

For the first we would like m to be the least integer such that x < m. The existence of such
an m is stated in the book’s proof without comment and is a special case (of a version) of the
principle of induction. However, it should be noted that this principle is a consequence of the
supremum axiom. (The proof of this fact is a little bit involved as we must first specify exactly
the definition of the integers as a subset of R and is given in an exercise below.) In any case as
m is the least integer > x we must have that m − 1 ≤ x, i.e., m ≤ x + 1 < y which proves the
first part. For the second we proceed as in the book and use (a) to get an integer n > 0 such that
n(y − x) > 1, i.e., ny − nx > 1. By the first part there is an integer m such that nx < m < ny
which gives x < m/n < y.
Exercise 10: i) We call a subset S of R stable if 0 ∈ S and m ∈ S ⇒ m+1 ∈ S. Show that the
intersection of all stable subsets is stable and is hence is contained in all stable subsets. Denote
this intersection N.

ii) Show that if 0 6= m ∈ N thenm−1 ∈ N. (Hint: Show that the set {0}∪ {m ∈ R | m− 1 ∈ N }
is stable.)

iii) Show that if n,m ∈ N then n < m⇒ n ≤ m− 1. (Hint: Use ii) to show that for fixed n,
the set of m that fulfils the implication is stable.)

iv) Show that if S is a non-empty subset of N then it contains a smallest element. (Hint: If
x is the infimum of S then there is an m ∈ S such that m < x+ 1. Use iii) to show that m is a
minimal element.)

v) Show that a non-empty subset of N bounded from above contains a largest element.
vi) Define the integers Z to be the union of N and −N := {−m | m ∈ N }. Show that every

subset of Z bounded from below has a minimal element.
vii) Show that Z is closed under addition and multiplication. (Hint: Reduce to appropriate

statements for N and use the same techniques as before.)

6.3 Equivalence relations and classes
In Definition 2.3 the notion of an equivalence relation is introduced. Later on (as well as before!)
the associated notion of equivalence class is used without comment. Given an equivalence relation
∼ on a set S, the equivalence class containing an element s ∈ S is the subset s := {t ∈ S | s ∼ t }.
The conditions for being an equivalence relation ensure first that s does indeed belong to s, then
that S is the disjoint union of the different equivalence classes and finally that t and t′ belong to
the same equivalence class precisely when t ∼ t′.
Exercise 11: Verify these statements.

The main point about equivalence relation is that one often wants to regard two equivalent
element as essentially the same. This can be formalised by considering the set S of equivalence
classes so that s 7→ s may be regarded as a function S → S. Equivalence between elements is
thus replaced with actual equality of equivalence classes.

6.4 Countable union of countable sets
It is somewhat difficult to get a proper overview of the proof of Theorem 2.12. A better way to
organise is to start with a lemma.

Lemma 6.1 If f : S → T is a function and S is countable, then the image f(S) is finite or
countable.

Proof. Let g : Z+ → S be a bijection (where Z+ is the set of positive integers) and let h be the
composite f ◦ g. By definition h is a surjective map to f(S). Put

T := {n ∈ Z+ | m < n⇒ h(m) 6= h(n) }.
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Then we have that the restriction of h to T is still surjective and it is also injective, i.e., h gives
a bijection between T and f(S). According to Theorem 2.8 of the book T is either finite or
countable and thus so is f(S).

The proof of Theorem 2.12 is now that we (if we use the notations of the proof) first find a
surjective map from N to S by the enumeration x11;x21, x12;x31, x22 . . . and the lemma gives
that S is finite or countable but as E1 ⊆ S it is countable.

Note also that the enumeration that is presented in the proof does not provide a proper
mathematical proof. Rather the reader is expected to turn the graphical description into a
mathematical proof. What must be proved is that there is a bijection between the set of positive
integers Z+ and the set of pairs of positive integers, Z2

+. We can use the graphical description
as a starting point but are required to turn it into explicit formulas. The key computation is
that one needs to compute which position one has reached one a diagonal has been finished.
This means counting the number of element in the set {(i, j) ∈ Z2

+ | i+ j ≤ n }. For this one
computes the number of elements of each diagonal and arrives at the conclusion that the number
of elements of the set equals 1 + 2 + · · ·+ n− 1 which we know to be equal to n(n− 1)/2. With
this a starting point we can give a proper proof.

Proposition 6.2 The map f : Z2
+ → Z+ given av f(i, j) = (i + j − 1)(i + j − 2)/2 + j is a

bijection.

Proof. We start by proving a statement that we shall then see is equivalent to what we want to
prove.

For each m ∈ Z+ there are unique n, j ∈ Z+ with 0 < j < n and m = (n− 1)(n− 2)/2 + j.
To show this we let n be the largest integer for which (n−1)(n−2)/2 < m. Such an n exists as

(n−1)(n−2)/2 < m implies that n ≤ m so we can use the supremum axiom (as in 10). We then
have that n+ 1 does not fulfil the condtion so that n(n− 1)/2 = (n+ 1− 1)(n+ 1− 2)/2 ≥ m.
This gives that m − n(n − 1)/2 ≤ n(n − 1)/2 − (n − 1)(n − 2)/2 = n − 1 so that if we put
j := m−n(n− 1)/2 we have that 0 < j < n and m = (n− 1)(n− 2)/2 + j. If we instead assume
that we have written m as m = (n−1)(n−2)/2+ j with 0 < j < n we may work backwards and
see that n is the largest integer n so that (n− 1)(n− 2)/2 < m which means that n is uniquely
determined by m and then so is j.

We now define a function g : Z+ → Z2
+ by given m ∈ Z+ write m as (n−1)(n−2)/2+ j with

0 < j < n and then put g(m) = (n− j, j). By what we have already proven g is well-defined and
man sees easily that f and g are inverses to each other.

Note that this makes the proof of the theorem a bit more complicated than one would like
(though the graphical argument is rather attractive). There are however other ways of construct-
ing a bijection between Z+ × Z+ and Z+ or, which amounts to the same, between N ×N and
N. The following exercise gives one of them.
Exercise 12: i) Show that each natural number n can be written uniquely in the form n =∑∞
k=0 ak10k, where 0 ≤ ak < 10 and all but a finite number of the ak are equal to 0.
ii) Show that the map

(
∞∑
k=0

ak10k,
∞∑
k=0

bk10k) 7→
∞∑
k=0

ck10k,

where ck = ak/2 if k is even and ck = b(k−1)/2 if k is odd, gives a bijection N×N→ N.

6.5 Countability of the rational number
The proof of Cor. 2.13 is quite brief and there is reason to look more closely at it. We start by
showing the countability of the positive rational numbers Q+. We have a map Z2

+ → Q+ taking
a pair (m,n) to the number m/n. This map is onto and as we have a bijection Z+ → Z2

+ we
get that the composite Z+ → Z2

+ → Q+ also is onto (as the composite of two surjective maps is
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surjective). According to Lemma 6.1 we get that Q+ is countable or finite but as Q+ contains
Z+ which is not finite Q+ itself can not be finite.
Exercise 13: We have an explicit surjective map Z+ → Q+ and Lemma 6.1 then gives an explicit
enumeration of Q+. Determine the image of 20 under it.

6.6 Convergence of Cauchy sequences
Theorem 3.11(b) can be proven by a somewhat different argument than that of the book which
maybe is clearer: One uses Theorem 3.6(a) to conclude that there is a p ∈ X and a subsequence
(pnk

) such that pnk
→ p. It is then enough to show that the whole sequence converges towards

p. Let therefore ε > 0 be arbitrary and pick N so that we have d(pnk
, p) < ε/2 (we do this by

first choosing a K so that it is true for k ≥ K and then choose a N so that nk ≥ N ⇒ k ≥ K) if
nk ≥ N as well as d(pm, pn) < ε/2 if m,n ≥ N (which can be done as the subsequence converges
and the whole sequence is a Cauchy sequence). Choose a nk ≥ N and letm ≥ N . The triangle
inequality then gives us d(pm, p) ≤ d(pm, pnk

) + d(pnk
, p) < ε/2 + ε/2 = ε.

6.7 Connected sets
The proof of Theorem 4.22 becomes more difficult to see through than necessary because the
definition of connected subset that is used. The proof can be simplified (at the price of doing
some more initial work). What one should start doing is to define the notion of connected metric
space (the book defines when a subset of a metric space is connected).

Definition 6.3 A metric space X is connected if it cannot be written as a disjoint union of two
open non-empty sets.

Remark: i) This is a negative definition (in that it rather defines when a space is not connected).
The positive version (and the one that is used in practice) is if one has written a connected metric
space as a disjoint union of two open subsets, then one of the subsets is empty.

ii) Note that if the metric space X is the disjoint union of the open subsets U and V , then
U is the complement of V which means that U (as well as V ) is also closed. Conversely, if U
is both open and closed, then X is the union of U and its complement V which is also open.
A metric space is therefore connected precisely when it does not contain any proper non-empty
clopen (= closed + open) subsets.

iii) It is not necessary to use the definition used in the book of connected subset, one can
instead just use the one just given (though we shall show that the definitions are equivalent).

The result analogous to Theorem 4.22 using instead this definition has a much cleaner proof.

Theorem 6.4 If f : X → Y is a continuous function between metric spaces, then it is image
f(X) is connected (considered as a metric space through the metric defined on Y ) if X is.

Proof. The function f gives rise to a function (which we also call f) f : X → f(X). It is easy to
show that f as function from X to Y is continuous precisely when it is continuous as function
from X to f(X) (where again f(X) is a metric through the metric induced from Y ). We may
therefore assume that Y = f(X). Assume now that Y is the disjoint union of the non-empty
open subsets U and V . Then X is the disjoint union of f−1(U) and f−1(V ). These sets are
non-empty as f(X) = Y and open as f is continuous and U and V are open. As X is assumed
to be connected this is a contradiction.
Exercise 14: Show that if X and Y are metric spaces and Z ⊆ Y , then a function f : X → Z
is continuous (where Z is given the induced metric) exactly when the function X → Y given by
f is continuous.

To get a simple proof of Theorem 4.22 it remains to show how our definition of connected
metric spaces is connected to the definition of connected subset in the book.
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Proposition 6.5 Let X be a metric space and E ⊆ X a subset. Then E is connected as metric
space (with the metric induced from X) precisely when it is connected as subset of X (i.e.,
according to Definition 2.45).

Proof. Assume that E is the union of two separated sets A and B and let U ′ := X \ A and
V ′ := X \B and put U := U ′ ∩E and V := V ′ ∩E. It is clear that U ′ and V ′ are open in X and
therefore U and V are open in E. We have that U contains B as B ∩ A = ∅ and U is evidently
disjoint from A so that U = B as E is the disjoint union of A and B. In the same way we get
V = A so that E is the disjoint union of the two open non-empty subsets U and V .

Assume now that E is the disjoint union of the two open non-empty subsets U and V .
Thus for each x ∈ U there is a rx > 0 so that BE(x, rx) := {y ∈ E | d(x, y) < rx } lies in
U and thus we have that BE(x, rx) ∩ V = ∅. This means that BX(x, rx) ∩ V = ∅ eftersom
BX(x, rx) ∩ E = BE(x, rx). If we put U ′ := ∪x∈UBX(x, rx) we have that U is open in X and
hence V ⊆ X \X ′. We further obviously have that U ⊆ U ′ so that V ∩ U = ∅ and in the same
way we get that V ∩ U = ∅ and thus U and V are separated.

To further demonstrate that our definition of connected spaces can be used without involving
the definition in the book we prove the characterisation of connected subsets of R.

Proposition 6.6 A subset E of the extended real line is connected precisely when z ∈ E if
x, y ∈ E and x < z < y.

Proof. Assume to begin with that there are x, y, z with x < z < y and x, y ∈ E but z /∈ E. If
we put U := {t ∈ E | t < z } and V := {t ∈ E | z < t }. Then we have that U and V are open
in E, E is the disjoint union of U and V as z /∈ E and U and V are non-empty because x ∈ U
and y ∈ V . Hence E is not connected.

For the converse we may assume, by way of contradiction, that E is the disjoint union of the
open non-empty sets U and V and that if x, y ∈ E we have that all z with x < z < y belongs to
E. We may further choose x ∈ U and y ∈ V . After possibly having permuted U and V we may
assume that x < y and our assumption gives that [x, y] ⊆ E. We may then replace E by [x, y],
U by U ∩ [x, y] and V by V ∩ [x, y] which means that we may assume that E = [x, y]. Let now z
be the supremum of U . We have that z either belongs to U or V . If it belongs to U then z 6= y
as y ∈ V and as U is open in [x, y] we have that there is a δ > 0 such that ]z − δ, z + δ[⊆ U but
the fact that z + δ/2 ∈ U means that z is not an upper bound of U , a contradiction. If instead
z ∈ V by the same argument we get that ]z − δ, z + δ[∈ V for some δ > 0 which implies that
z − δ/2 is also an upper bound for U contradicting that z is the least upper bound of U .

6.8 Countability of points of discontinuity

There is an alternative proof of Theorem 4.30 (that the set of points of discontinuity of a
monotone function is at most countable) which may be easier to understand. We assume that
f : [a, b] → R is monotone and let E be the set of its points of discontinuity, By possibly
replacing f by −f we may assume that f is increasing. Put now, for a positive integer n,
En := {x ∈ E | f(x+)− f(x−) > 1/n }. If we can show that En is finite and that E = ∪nEn,
then it follows from Corollary 2.12 that E is at most countable. We have x ∈ E precisely when
f(x+) − f(x−) > 0. For a x ∈ E we can then choose n such that f(x+) − f(x−) > 1/n
which means that x ∈ En which implies that E is the union of the En. On the other hand, let
{x1 < · · · < xk} be a finite subset of En. Then we have that

f(b)− f(a) = f(b)− f(xk+) + f(xk+)− f(xk−) + f(xk−)− f(xk−1+) +
f(xk−1) + · · · − f(x1−) + f(x1−)− f(a) =

(f(b)− f(xk+)) + (f(xk+)− f(xk−)) +
(f(xk−)− f(xk−1+)) + (f(xk−1 + · · · − f(x1−)) + (f(x1−)− f(a)) .
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All tems in the last sum is ≥ 0 as f is increasing and f(xi+) − f(xi−) > 1/n for i = 1, . . . , k.
This means that the whole sum is > k/n which gives that k < n(f(b)− f(a)). This means that
every finite subset of En contains less than < n(f(b)− f(a)) element which in turn implies that
En itself contains at most that number of elements and is therefore finite.

6.9 Def 4.33

In Definition 4.33 one must replace “such that V ∩E is not empty” with “such that V ∩E contains
points different from x”.
Exercise 15: Give an example that Definition 4.33 as it stands in the book is not equivalent
with Definition 4.1 (in relevant cases).

6.10 Theorem 6.10

At the beginning of the proof the claim is made that one may choose [uj , vj ] around the points of
E such that

∑
j α(vj)−α(uj) < ε. The reason for this is that if pj is the point in E ∩ [uj , vj ] we

may, by possibly shrinking the interval [uj , vj ], make α(vj)−α(pj) and α(pj)−α(uj) arbitrarily
small (as α is continuous in pj) and therefore α(vj)−α(uj) = α(vj)−α(pj) +α(pj)−α(uj) can
be made as small as needed. Now, the number of elements in E is fixed so

∑
j α(vj)−α(uj) can

be made arbitrarily small.
Note that the proof has many similarities with the proof of Weierstrass approximation theo-

rem. In both case one divides the relevant interval in two pieces and treat them in completely
different ways. In one case one uses just that the arbitrary function f is bounded and that
another factor (α(vj)− α(uj) resp. Qn) is small, in the other case one uses that f is continuous
and therefore has small variation on small intervals.

6.11 The norm of a linear map

Probably the best way to think of the norm of a linear map A is that it is the smallest number
λ such that |Ax| ≤ λ|x| for all vectors x. Hence, if one want to give an upper bound of ‖A‖
it is then a matter of estimating |Ax| as a fixed number times |x|. We have for instance that
|(A+B)x| = |Ax+Bx| ≤ |Ax|+ |Bx| ≤ ‖A‖|x|+ ‖B‖|x| = (‖A‖+ ‖B‖)|x| which implies that
‖A+B‖ ≤ ‖A‖+ ‖B‖ (which is one of the results of Theorem 9.7).

There is however another way to look at the norm: If x 6= 0 then |Ax| ≤ λ|x| is equivalent
with A(x/|x|) ≤ λ and the length of x/|x| equals 1 so that

‖A‖ = sup
|x|=1

|Ax|.

Now, we can easily see that A as a functino Rm → Rn is continuous; if x =
∑
i λiei (where ei

are the elements of the standard base) we have Ax =
∑
i λiAei so that the continuity follows

directly from the continuity of addition and multiplication. From this follows that the function
x 7→ |Ax| is continuous (as y 7→ |y| is continuous). Further, the unit sphere {x ∈ Rm | |x| = 1 }
is closed and bounded and hence compact which implies that the continuous function x 7→ |Ax|
is bounded and consequently sup|x|=1 |Ax| <∞.

We can be even more precise and first note that

‖A‖2 = sup
|x|=1

|Ax|2

and that x 7→ |Ax|2 is a quadratic form. More precisely we have that

|Ax|2 = (Ax)t(Ax) = xtAtAx,
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where we have identified the linear map with its matrix (with respect to the standard base for
Rn). This means that the quadratic form is given by the symmetric matrix AtA. We now know
from the theory of quadratic forms that sup|x|=1 |Ax|2 is equal to the largest eigenvalue of the
symmetric matrix AtA so that ‖A‖ is equal to the square root of this largest eigenvalue.

Example: Assume that A =
(

0 1
0 0

)
. Then we have that A(x, y) = y and the norm ‖A‖ is the

smallest number λ such that |y| ≤ λ
√
x2 + y2. If we put (x, y) = (0, 1) we get 1 ≤ λ. On the

other hand we have |y| ≤
√
x2 + y2 and thus λ = 1 work. This gives ‖A‖ = 1.

We may instead compute AtA =
(

0 0
0 1

)
which clearly has the eigenvalues 0 and 1 and we

get that ‖A‖ =
√

1 = 1.

7 The inverse function theorem
It is not altogether easy to follow the proof in the book of the inverse function theorem. I shall
give a proof that contains the same basic ideas but which is hopefully easier to follow. It takes
its starting point in the method of Newton-Raphson.

Before we go into the details let us start by noting some common features between the two
methods.

In both cases we want to solve an equation f(x) = y, where x is the value to be found. On
the other hand y is a variable value close to some b where we as starting data have an a such
that f(a) = b and as a further condition we are looking for a solution x which is close to a. In
both cases we try to find an iteration scheme xn+1 = Gy(xn), where we use the notation Gy
to emphasise that Gy will depend on y. The idea is that the sequence (xn) should converge
to a solution x. As always with iteration schemes there are two things to do; show that the
sequence converges and given that it converges that it converges to a solution of the original
problem. Given that the sequence converges some x we may pass to the limit in the relation
xn+1 = Gy(xn) we get, assuming that Gy is continuous, x = Gy(x) and a first condition on Gy
is that this relation should imply that f(x) = y and if this is so we have taken care of the second
part. For the convergence the general idea is that Gy should have the property that xn+1 and
xn should become closer and closer to each other quickly enough so that (xn) will actually be
a Cauchy sequence. (Note that for this it will not quite be enough that xn+1 − xn → 0 when
n → ∞ as we need xi − xj → 0 when i, j → ∞.) A crucial part to make this work for an
iteration scheme is that one must have a good initial value x0, in fact it should be close to an
actual solution. This is in general a difficult problem. In our case y is supposed to be close to
b and we are hoping that x will be close a. This suggests that we should pick a as the initial
value and at least it gives us a candidate for initial value. That the whole method really works
depends on the fact that we have the freedom to choose how close to b we require y to be. We
choose this distance to be small enough to get a number of estimates that together will make all
the parts work.

7.1 Newton-Raphson in one variable
The method of Newton-Raphson tries to solve an equation g(x) = 0, where we begin by assuming
that g is a function from an open subset of R to R, will start with an approximate value x0 and
then step by step try to find better and better approximations. In an attempt to find a better
approximation of a zero of g one replaces g by its tangent in the point and hope that a zero of
the tangent gives a better approximation. Then one repeats this procedure (see Fig. 4). If xn
is the result of the n’th step its tangent has the equation y = g(xn) + g′(xn)(x − xn) and if we
solve for a zero we get

xn+1 = xn −
g(xn)
g′(xn)

.



21

Figure 4: The Newton-Raphson method

If we assume that this sequence converges towards an x we may take the limit in this definition and
obtain x = x−g(x)/g′(x) which gives g(x) = 0 and we have indeed found a zero. This conclusion
was however made under a number of assumption and the next step is to find conditions under
which they are fulfilled.
Example: Let g(x) = x2 − 2. Then we get xn+1 = xn − (x2

n − 2)/2xn. This can be rewritten
as xn+1 = (xn + 2/xn)/2 which in turn can be expressed as saying that that we let xn+1 be the
average of xn and the number whose product with with xn becomes 2. If we start with x0 = 1 we
get x1 = 1.5, x2 ≈ 1.4167, x3 ≈ 1.414216, x4 ≈ 1.414213562375, x5 ≈ 1.4142135623709504880169
which as can be seen converges very quickly towards

√
2 ≈ 1.4142135623730950488016887242.

To begin with we must of course assume that the derivative of g(x) exists but in order for
the final limit argument to work we must also assume that the derivative is continuous. This
is also what is needed for some estimates that we shall need to work. More precisely we have
the following lemma which says that the relative error in the approximation of a function by its
tangent is uniformly bounded.

Lemma 7.1 Let g : ]a, b[→ R be a function with continuous derivative. Then we have that for
every closed interval I n ]a, b[ and every ε > 0 there is a δ > 0 such that

|g(x)− g(y)− g′(y)(x− y)| < ε|x− y|

for all x, y ∈ I with |x− y| < δ.

Proof. We may, because of uniform continuity choose a δ > 0 such that |g′(x) − g′(y)| < ε if
x, y ∈ I and |x − y| < δ. We can use the mean value theorem to find a ξ in ]x, y[ such that
g(x)− g(y) = g′(ξ)(x− y). This gives

|g(x)− g(y)− g′(y)(x− y)| = |g′(ξ)− g′(y)||x− y| < ε|x− y|,

the last equality coming from |ξ − y| < δ.

If we now consider our recursion, then we see that we have chosen xn exactly so that g(xn−1)+
g′(xn−1)(xn − xn−1) = 0, i.e., so that

g(xn) = g(xn)− g(xn−1)− g′(xn−1)(xn − xn−1).

According to the lemmam we may make this small in relation to |xn−xn−1| and then according
to the recursion formula |xn+1 − xn| will be small in relation to |xn − xn−1| which means that
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xn and xn+1 will be closer to each other and that ought to mean that {xi} forms a Cauchy
sequence. It is now quite easy to write down the conditions that makes this true. In fact, we
want two conditions should be fulfilled. The first is that |xn+1 − xn| should be estimated from
above by a fixed factor less than 1 times |xn − xn−1|. This will mean that not only will the
differences between xn and xn+1 tend towards 0 but also the differences between xi and xj will
which will make (xn) a Cauchy sequence. The second is that we need an estimate of |x1 − x0|
that will guarantee that the xn will keep close enough to x0 so that the estimate that is needed
in the first will be true. We assume that g′(x0) 6= 0 and because of the continuity we can
find a closed interval I such that x0 lies in the interior of I and such that |g′(x)| ≥ d > 0 for
x ∈ I. We then use the lemma to find a δ > 0 such that if |x − y| < δ then we have that
|g(x)− g(y)− g′(y)(x− y)| < 1/2d|x− y|. We further want that if |x− x0| < δ then x will lie in
I. We now define xn by the inductive formula

xn+1 = xn −
g(xn)
g′(xn)

and want to show that |xn+1−xn| < 1/2|xn−xn−1| which by induction gives that |xn+1−xn| <
2−n|x1 − x0| and a repeated use of the triangle inequality gives

|xn+1 − x0| < 1 +
1
2

+ · · ·+ 1
2n

= 2
(

1− 1
2n+1

)
|x1 − x0| < 2|x1 − x0|.

If we to begin with assume that |x1 − x0| < δ/2, then the induction gives |xn − x0| < δ and also
that |xn − xn−1| < δ so that xn ∈ I and

|g(xn)| = |g(xn)− g(xn−1)− g′(xn−1)(xn − xn−1)| <
1
2d
|xn − xn−1|

which gives that

|xn+1 − xn| =
∣∣∣∣ g(xn)g′(xn)

∣∣∣∣ < d

2d
|xn − xn−1| =

1
2
|xn − xn−1|

which provides the next step of the induction. The whole induction now works provided that
we know that |x1 − x0| < δ/2. We have that |x1 − x0| = |g(x0)/g′(x0)| so this is true if we can
assume that x0 is a good enough approximation so tht |g(x0)| < dδ/2, which is exactly what we
do.

If now i > j we may once again use that we know that |xn+1−xn| < 2−n|x1−x0| to get that

|xi − xj | <
(

1
2j

+
1

2j+1
+ · · ·+ 1

2i−1

)
|x1 − x0| < 2

1
2j
|x1 − x0|

which shows that {xi} is a Cauchy sequence. This leads to the following result:

Proposition 7.2 Let g : I → R be a function from an open interval I with continuous derivative
in the the interval. Let x0 ∈ I and assume given δ > 0 and d > 0 such that

1. ]x0 − δ, x0 + δ[⊆ I,

2. |g′(y)| ≥ d for all y ∈ I,

3. |g(x)− g(y)− g′(y)(x− y)| < d/2|x− y| if x, y ∈ I and |x− y| < δ,

4. and |g(x0)| ≤ dδ/2.

Then there is an x ∈ I with |x− x0| ≤ δ and g(x) = 0.
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Proof. The proof has already been given, let us just point out some things. The first is that the
condition |g(x0)| ≤ dδ/2 was needed to make |x1 − x0| < δ/2 which in turn was needed to make
sure that |xn − x0| < δ which in its turn was used to allow us to use the other inequalities to
estimate |xn+1 − xn|. By then passing to the limit in |xn − x0| < δ we get |x − x0| ≤ δ. This
extra piece of information is useful in various contexts.

One could of course also wonder how one finds the starting value x0. The answer that will
interest us for the inverse function theorem is that g(x) is of the form f(x)− y′; we are trying to
solve the equation f(x) = y′ where y′ is close to y0 := g(x0). Allowing only values y′ such that
|y′ − y0| ≤ dδ/2 we may, as g(x0) = y0 − y′, obtain a solution x′ with f(x′) = y′. (Note that
g(x)− g(y) and g′(y) do not depend on y′ so that d and δ depend only on f and not on y′.)

Remark: For our purposes (i.e., the inverse function theorem) it is enough to show that there
exists a neighbourhood of y0 in which a solution always exists. Note however that one may then
find a neighbourhood of y′ in which one can solve the equation. In many cases this process can
be repeated to find solution for y which do not necessarily lie close to y0. (It does not work
always however, one may for instance be unlucky and encounter a zero of f ′(x) along the way.)

We shal finish this part with some comments that are not directly relevant for the inverse
function theorem. That g(x) is of the form f(x)− y′ with y′ close to f(x0) is not the only way
to get an approximation to a zero of g (that can then be used as an initial value). There is in
fact another method to find a sequence that converges to a zero of g, interval division. Assume
therefore that we have found x0 and t0 such that g(x0) < 0 and g(t0) > 0. Consider g((x0+t0)/2).
If this value equals 0 we are finished, if it is > 0 we put x1 := x0 and t1 := (x0 + t0)/2 and if it
is < 0 we put x1 := (x0 + t0)/2 and t1 := t0. Then we have that g(x1) < 0 and g(t1) > 0 and
|x1 − t1| = 1/2|x0 − t0|. Repeating this procedure gives us (xn, tn) with g(xn) < 0and g(tn) > 0
so that |xn− yn| = 2−n|x0− t0| which means that xn and tn converges to a common value which
necessarily is a zero of g.

One may then ask what the point is of the method of Newton-Raphson when this method
already exists, in particular as we see that |xn − x| is on the order of 2−n which means that for
both methods we must make on the order of n iterations to get n digits of the zero. The answer is
that in practice the estimate we have made of the error in the Newton-Raphson method ismuch
too large. If we do not only assume that g has a continuous derivative but that it also has a
second derivative which is bounded then we get a much better estimate of the error; roughly the
number of correct digits is double through each iteration. (This can be seen to be the case in
the example above of computing

√
2.)

Exercise 16: i) Assume that g : I → R is a function on the open interval I with first and second
derivatives in each point and that we have |f ′′(x)| ≤M for all x ∈ I. Show that

|g(x)− g(y)− g′(y)(x− y)| ≤ M

2
|x− y|2

and

|g′(x)− g′(y)| ≤M |x− y|

for all x, y ∈ I.
ii) Show that if x0 is used as a starting point for a Newton-Raphson iteration and if xn ∈ I

for all n then we have that there is a constant C such that |xn+1 − xn| ≤ (C|x1 − x0|)2
n

. Give
conditions ensuring that C|x1 − x0| < 1.

Remark: A convergence like this where |xn − x| = O(ε2
n

) for some ε < 1 is called quadratic
convergence and roughly means that then number of correct digits is doubled at each iteration.
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7.2 The Newton-Raphson method in several variables
To be able to generalise the Newton-Raphson method to several variables we are forced to forget
the interpretation in terms tangents. This is actually quite natural as we saw in the proof (of
the one-variable version) that the method works that what we used was that the definition of
the derivative gave that g(x) − g(y) − g′(y)(x − y) should be small (though we needed some
uniformity of the smallness which goes beyond the mere definition). We can formulate what we
did as saying that instead of trying to solve the equation g(x) = 0 we try (in the first step) to
solve the equation we get by approximating g(x) with the first two terms of its Taylor expansion,
i.e., g(x0) + g′(x0)(x − x0) = 0 instead of g(x) = 0. To do that there is nothing that stops us
from assuming that g is a function from an open subset of Rn to Rn. The only difference is that
instead of a linear equation we get a system of linear equations. We can still solve it though if we
assume that g′(x0) is an invertible linear map (to just assume that it is non-zero is not enough);
we get x = x0− g′(x0)−1(g(x0)). We now go through the same steps that we did in one variable
to see that it works.

Lemma 7.3 Let g : U → Rn be a function from an open subset of Rn to Rn with continuous
derivative. Then we have that for every compact subset K in U and every ε > 0 there is a δ > 0
such that

|g(x)− g(y)− g′(y)(x− y)| < ε|x− y|
for all x, y ∈ K with |x− y| < δ.

Proof. Because of uniform continuity we can choose a δ > 0 such that ‖g′(x) − g′(y)‖ < ε if
x, y ∈ K and |x− y| < δ. Fix y ∈ K and consider the function h(x) := g(x)− g′(y)(x). Then we
have that h′(x) = g′(x) − g′(y) and thus ‖h′(z)‖ < ε if |z − y| < δ. According to Theorem 9.19
we have, for |x− y| < δ

|g(x)− g(y)− g′(y)(x− y)| = |h(x)− h(y)| ≤ ε|x− y|.

Exercise 17: Use the proof of the lemma to give a new proof of Theorem 9.21.

We can use this lemma to give a criterion for the success of the method of Newton-Raphson
in several variable which is almost identical with the one-variable case.

Proposition 7.4 Let g : U → Rn be a function from an open subset U ⊆ Rn with continuous
derivative. Let x0 ∈ U and assume given δ > 0 and d > 0 such that

1. The ball D(x0, δ) lies in U ,

2. g′(y) is invertible and ‖g′(y)−1‖ ≤ 1/d for all y ∈ U ,

3. |g(x)− g(y)− g′(y)(x− y)| ≤ d/2|x− y| if x, y ∈ U and |x− y| < δ,

4. and |g(x0)| < dδ/2.

Then there exists a x ∈ U with |x− x0| < δ and g(x) = 0.

Proof. We do as inte the 1-variable case and put

xn+1 = xn − g′(xn)−1(g(xn)),

where it of course must be part of our proof to show that xn ∈ U for all U (if this is the
case, our conditions imply that g′(xn) is invertible for all n). We note first that |x1 − x0| ≤
‖g′(x0)−1‖|g(x0)| < 1/d · dδ/2 = δ/2. We want to show by induction that |xn+1 − xn| <
1/2|xn − xn−1|. If this is true for a given n we have |xn+1 − xn| < 2−n|x1 − x0| and therefore
that

|xn−x0| = |xn−xn−1+xn−1− . . . x1−x0| ≤ |xn−xn−1|+ . . . |x1−x0| < (2−2−n+1)|x1−x0| < δ
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so that xn lies in U . We have now chosen xn such that g(xn−1) + g′(xn−1)(xn − xn−1) which
gives

|g(xn)| = |g(xn)− g(xn−1)− g′(xn−1)(xn − xn−1)| < d/2|xn − xn−1|

and this in turn gives

|xn+1 − xn| = |g′(xn)(g(xn))| ≤ ‖g′(xn)‖|g(xn)| <
1
d

d

2
|xn − xn−1| =

1
2
|xn − xn−1|.

The same argument that gave that |xn − x0| < (2− 2−n+1)|x1 − x0| now gives for i > j

|xi − xj | < 2
(

1− 1
2i−j

)
1
2j
|x1 − x0|,

which shows that {xi} is a Cauchy sequence. Let x be its limit. As we have that |xn − x0| <
(2 − 2−n+1)|x1 − x0| we get |x − x0| ≤ 2|x1 − x0| < δ by letting n tend towards infinity and in
particular we have x ∈ U . If we let n → ∞ in the equation xn+1 = xn − g′(xn)−1(g(xn)) and
use that g and g′ are continuous we get x = x− g′(x)(g(x)) which gives g′(x)(g(x)) = 0, which
in turn, as g′(x) is invertible, gives g(x) = 0. This proves the proposition.
Remark: Note that this is essentially the same proof as that of Theorem 9.23 of the book.

7.3 The inverse function theorem
The inverse function theorem is now a rather direct consequence of the Newton-Raphson method.

Theorem 7.5 Assume that f : W → Rn is a function from an open subset W of Rn to Rn with
continuous derivative. Assume that f ′(a) is invertible for some a ∈ W and put b := f(a). Then
we have that

1. there are open subsets U and V i Rn sådana att a ∈ U , b ∈ V such that f is a bijection
from U to V and

2. if g : V → U is the inverse of f (that exists by the first part) we have that g has a continuous
derivative in all of V .

Proof. As f ′(x) is continuous and the invertible matrices form an open subset of L(Rn) the x for
which f ′(x) is invertible form an open subset. Thus we may, possibly after having replaced U with
a smaller set, assume that g′(x) is invertible. We also have that x 7→ ‖f ′(x)−1‖ is a continuous
function so we can, again after possibly having shrunk U , assume that ‖f ′(x)−1‖ ≤ 1/d for some
fix d. We may further replace U with D(a, α) for some α > 0 such that the closed ball D(a, α)
lies in U . This means that we may apply Lemma 7.3 to the compact set D(a, α) and thus find
δ > 0 such that

|f(x)− f(y)− f ′(y)(x− y)| < d

2
|x− y|

if |x−y| < δ. We now want to apply the Newton-Raphson method to the function g(x) := f(x)−y
for different y. Note that g′(x) = f ′(x) and g(x) − g(x′) = f(x) − f(x′) so that the only
thing that needs proving in order to use Proposition 7.4 on g(x) with starting value x0 is that
g(x0) = f(x0) − y = y0 − y fulfils |y0 − y| < dδ′/2 where δ′ ≤ δ has been chosen so that
D(x0, δ

′) ⊆ U and y0 := f(x0). This means that if we choose y sufficiently close to y0 this is
always the case. The proof now proceeds as in Theorem 9.24. We may furthermore conclude
that f is injective in U , because if f(x) = f(y), then we have that

|f ′(y)(x−y)| = |f(x)−f(y)−f ′(y)(x−y)| < d

2
|x−y| = d

2
|f ′(y)−1f ′(y)(x−y)| ≤ 1

2
|f ′(y)(x−y)|,

which gives f ′(y)(x − y) = 0 which in turn gives that x − y = 0 when f ′(y) is invertible.
Finally, to show that the inverse h of f has continuous differential it is enough to show that
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h′(y) = f ′(h(y))−1, aas h′ then is the composite of continuous functions. Now we have for
y, y′ ∈ V that

h(y′)− h(y)− f ′(h(y))−1(y′ − y) = f ′(h(y))−1 (f ′(h(y))(h(y′)− h(y)− (f(h(y′))− f(h(y)))))

which implies

|h(y′)− h(y)− f ′(h(y))−1(y′ − y)| ≤ ‖f ′(h(y))−1‖|f(x′)− f(x)− f(x)(x′ − x)|,

where x = h(y) and x′ = h(y′). It follows from Proposition 7.4 and g(x′) − g(x) = y′ − y that
there is a constant C such that |x′ − x| ≤ C|y′ − y| which gives

|h(y′)− h(y)− f ′(h(y))−1(y′ − y)|
|y′ − y|

≤ ‖f
′(h(y))−1‖

C

|f(x′)− f(x)− f(x)(x′ − x)|
|x′ − x|

and as |x′ − x| ≤ C|y′ − y| this gives that x′ → x when y′ → y and we get that the right hand
side tends towards 0 when y′ → y (as f is differentiable), this shows that h′(y) = f ′(h(y))−1.

If we compare with the proof in the book we see that the difference is that in the proof of
the book we use the iteration

xn+1 = xn + f ′(x0)−1(y − f(xn))

while the iteration in the Newton-Raphson method is

xn+1 = xn + f ′(xn)−1(y − f(xn)).

If we then look at the proof that these two methods converges one sees that the proof are fairly
similar and in particular that the estimates of the speed of convergence are about the same.
More precisely we get linear convergence, i.e., xn − x = O(εn) (which roughly means that each
iteration gives one new correct digit). This may make one wonder what the point of the method
of Newton-Raphson is, in particular is it seems more complicated; in each step one is forced to
compute the inverse of f ′(xn) while in the method of the book it is enough to compute f ′(x0)−1

once and for all. The reason why the Newton-Raphson method is interesting is the same as in
the one-variable case: If one puts extra conditions on f one will get quadratic convergence which
is shown in the following exercises.
Exercise 18: Assume that for f : [a, b] → Rn we have that f (n−1) is continuous on all of [a, b]
and that f (n)(t) exists for all t ∈]a, b[. Show that there exists x ∈]a, b[ such that∣∣∣∣∣f(b)−

n−1∑
k=0

(b− a)k

k!
fk(a)

∣∣∣∣∣ ≤ b− a
n!
|f (n)(x)|.

Hint: Imitate the proof of Theorem 5.19 combined with Taylor’s theorem.

References


